Remote Access Transactions of the Moscow Mathematical Society

Transactions of the Moscow Mathematical Society

ISSN 1547-738X(online) ISSN 0077-1554(print)

Request Permissions   Purchase Content 
 
 

 

On Salikhov's integral


Author: V. N. Sorokin
Translated by: E. Khukhro
Original publication: Trudy Moskovskogo Matematicheskogo Obshchestva, tom 77 (2016), vypusk 1.
Journal: Trans. Moscow Math. Soc. 2016, 107-126
MSC (2010): Primary 30E10; Secondary 30C85, 33C47, 11J82
DOI: https://doi.org/10.1090/mosc/254
Published electronically: November 28, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We state a new interpolation problem, which we solve using Salikhov's integral. This was previously used in the theory of Diophantine approximations. We study the asymptotic behaviour of orthogonal polynomials related to this problem.


References [Enhancements On Off] (What's this?)

  • 1. E. M. Nikishin and V. N. Sorokin, Rational approximations and orthogonality, Nauka, Moscow, 1988; English transl., Transl. of Math. Monographs, vol. 92, Amer. Math. Soc., Providence, RI, 1991. MR 953788
  • 2. K. Mahler, Zur Approximation der Exponentialfunction und des Logarithmus, J. Reine Angew. Math. 166 (1932), 118-150. MR 1581302
  • 3. N. I. Fel'dman, An estimate of the absolute value of a linear form by logarithms of certain algebraic numbers, Mat. Zametki 2 (1967), 245-256; English transl., Math. Notes 2 (1968), 634-640. MR 0219478
  • 4. E. M. Nikishin, On logarithms of natural numbers, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), 1319-1327; English transl., Math. USSR, Izv. 15 (1980), 523-530; Correction: Logarithms of natural numbers, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), no. 4, 972. (Russian) MR 587346
  • 5. V. N. Sorokin, Estimates for polynomials in logarithms of some rational numbers, Fundam. Prikl. Mat. 11 (2005), no. 6, 179-194; English transl., J. Math. Sci. (N.Y.) 146 (2007), 5759-5770. MR 2204431
  • 6. M. Hata, Rational approximations to $ \pi $ and some other numbers, Acta Arith. 63 (1993), 335-349. MR 1218461
  • 7. V. N. Sorokin and E. N. Cherednikova, Some remarks on the approximation of logarithms, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 2007, no. 2, 21-26; English transl., Moscow Univ. Math. Bull. 62 (2007), no. 2, 61-66. MR 2357042
  • 8. E. A. Rukhadze, A lower bound for the approximation of $ \textup {ln} 2$ by rational numbers, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1987, no. 6, 25-29; English transl., Mosc. Univ. Math. Bull. 42 (1987), no. 6, 30-35. MR 922879
  • 9. V. V. Zudilin, An essay on the irrationality measures of $ \pi $ and other logarithms, Chebyshevskiĭ Sb. 5 (2004), no. 2(10), 49-65. (Russian) MR 2140069
  • 10. V. Kh. Salikhov, On the irrationality measure of $ \mathrm {ln} 3$, Dokl. Akad. Nauk 417 (2007), 753-755; English transl., Dokl. Math. 76 (2007), 955-957. MR 2462856
  • 11. N. S. Landkoff, Foundations of modern potential theory, Nauka, Moscow, 1966. (Russian)
  • 12. A. A. Gonchar, E. A. Rakhmanov, and V. N. Sorokin, On Hermite-Padé approximants for systems of functions of Markov type, Mat. Sb. 188 (1997), no. 5, 33-58; English transl. Sb. Math. 188 (1997), 671-696. MR 1478629

Similar Articles

Retrieve articles in Transactions of the Moscow Mathematical Society with MSC (2010): 30E10, 30C85, 33C47, 11J82

Retrieve articles in all journals with MSC (2010): 30E10, 30C85, 33C47, 11J82


Additional Information

V. N. Sorokin
Affiliation: Department of Mechanics and Mathematics, Moscow State University, 119991 Moscow, Russia
Email: vnsormm@mech.math.msu.su

DOI: https://doi.org/10.1090/mosc/254
Keywords: Approximations of logarithms, Hermite--Pad\'e approximations, saddle-point method, algebraic functions and Riemann surfaces, equilibrium logarithmic potentials
Published electronically: November 28, 2016
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society