Remote Access Transactions of the Moscow Mathematical Society

Transactions of the Moscow Mathematical Society

ISSN 1547-738X(online) ISSN 0077-1554(print)

Request Permissions   Purchase Content 
 
 

 

Integrable Systems, Shuffle Algebras, and Bethe Equations


Author: Boris L. Feigin
Translated by: V. E. Nazaikinskii
Original publication: Trudy Moskovskogo Matematicheskogo Obshchestva, tom 77 (2016), vypusk 2.
Journal: Trans. Moscow Math. Soc. 2016, 203-246
MSC (2010): Primary 17B37; Secondary 17B69, 17B80
DOI: https://doi.org/10.1090/mosc/259
Published electronically: November 28, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We speak about the part of integrable system theory dealing with conformal theory and $ W$-algebras (ordinary and deformed). Some new approaches to finding Bethe equations that describe the spectrum of Hamiltonians of these quantum integrable systems are developed. The derivation of the Bethe equations is based on the technique of shuffle algebras arising in quantum group theory.


References [Enhancements On Off] (What's this?)

  • 1. I. M. Gelfand and L. A. Dikii, Asymptotic behaviour of the resolvent of Sturm-Liouville equations and the algebra of the Korteweg-de Vries equations, Uspekhi Mat. Nauk 30 (1975), no. 5(185), 67-100; English transl., Russian Math. Surveys 30 (1975), no. 5, 77-113. MR 0508337
  • 2. V. G. Drinfeld, Quantum groups, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 155 (1986), Differentsialnaya Geometriya, Gruppy Li i Mekh. VIII, 18-49; English transl., J. Soviet Math. 41 (1988), no. 2, 898-915. MR 869575
  • 3. V. G. Drinfeld, Almost cocommutative Hopf algebras, Algebra i Analiz 1 (1989), no. 2, 30-46; English transl., Leningrad Math. J. 1 (1990), no. 2, 321-342. MR 1025154
  • 4. V. G. Drinfeld, A new realization of Yangians and of quantum affine algebras, Dokl. Akad. Nauk SSSR 296 (1987), no. 1, 13-17; English transl., Soviet Math. Dokl. 36 (1988), no. 2, 212-216. MR 914215
  • 5. V. G. Drinfeld and V. V. Sokolov, Lie algebras and equations of Korteweg-de Vries type, Current problems in mathematics, vol. 24, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984, 81-180. (Russian) MR 760998
  • 6. M. Jimbo and T. Miwa, Algebraic analysis of solvable lattice models, CBMS Regional Conference Series in Mathematics, vol. 85. Amer. Math. Soc., Providence, RI, 1995. MR 1308712
  • 7. V. E. Zaharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of solitons: Method of the inverse problem, Nauka, Moscow, 1980. (Russian) MR 573607
  • 8. A. A. Kirillov, Orbits of the group of diffeomorphisms of a circle and local Lie superalgebras, Funktsional. Anal. i Prilozhen. 15 (1981), no. 2, 75-76; English transl., Funct. Anal. Appl. 15 (1981), no. 2, 135-137. MR 617476
  • 9. S. L. Luk'yanov and V. A. Fateev, Conformally invariant models of two-dimensional quantum field theory with $ Z_n$-symmetry, Zh. Éksper. Teoret. Fiz. 94 (1988), no. 3, 23-37; English transl., Soviet Phys. JETP 67 (1988), no. 3, 447-454. MR 966184
  • 10. S. V. Manakov, Note on the integration of Euler's equations of the dynamics of an $ n$-dimensional rigid body, Funktsional. Anal. i Prilozhen. 10 (1976), no. 4, 93-94; English transl., Funct. Anal. Appl. 10 (1976), no. 4, 328-329. MR 0455031
  • 11. A. S. Mishchenko and A. T. Fomenko, Integrability of Euler's equations on semisimple Lie algebras, Trudy Sem. Vektor. Tenzor. Anal. 19 (1979), 3-94. (Russian) MR 549008
  • 12. L. G. Rybnikov, The argument shift method and the Gaudin model, Funktsional. Anal. i Prilozhen. 40 (2006), no. 3, 30-43; English transl., Funct. Anal. Appl. 40 (2006), no. 3, 188-199. MR 2265683
  • 13. A. M. Perelomov, Integrable systems of classical mechanics and Lie algebras, Nauka, Moscow, 1990; English transl., Birkhäuser, Basel, 1990. MR 1048350
  • 14. A. G. Reyman and M. A. Semenov-Tian-Shansky, Integrable systems, Inst. Komp'yut. Issled, Moscow-Izhevsk, 2003.
  • 15. E. K. Sklyanin, L. A. Takhtadzhyan, and L. D. Faddeev, Quantum inverse problem method: I, Teoret. Mat. Fiz. 40 (1979), no. 2, 194-220; English transl., Theor. Math. Phys. 40 (1979), no. 2, 688-706. MR 549615
  • 16. D. V. Talalaev, The quantum Gaudin system, Funktsional. Anal. i Prilozhen. 40 (2006), no. 1, 86-91; English transl., Funct. Anal. Appl. 40 (2006), no. 1, 73-77. MR 2223256
  • 17. L. A. Takhtadzhyan and L. D. Faddeev, The quantum method of the inverse problem and the Heisenberg $ XYZ$ model, Uspekhi Mat. Nauk 34 (1979), no. 5(209), 13-63; English transl., Russian Math. Surveys 34 (1979), no. 5, 11-68. MR 562799
  • 18. B. L. Feigin, The semi-infinite homology of Kac-Moody and Virasoro Lie algebras, Uspekhi Mat. Nauk 39 (1984), no. 2(236), 195-196; English transl., Russian Math. Surveys 32 (1984), no. 2, 155-156. MR 740035
  • 19. V. V. Bazhanov, S. L. Lukyanov, and A. B. Zamolodchikov, Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe Ansatz, Comm. Math. Phys. 177 (1996), no. 2, 381-398. arXiv:hep-th/9412229. MR 1384140
  • 20. V. V. Bazhanov, S. L. Lukyanov, and A. B. Zamolodchikov, Integrable structure of conformal field theory: II. Q-operator and DDV equation, Commun. Math. Phys. 190 (1997), no. 2, 247-278. arXiv:hep-th/9604044. MR 1489571
  • 21. A. Beilinson and V. Drinfeld, Quantization of Hitchin's integrable system and Hecke eigensheaves, preprint, http://www.math.uchicago.edu/ mitya/langlands/QuantizationHitchin.pdf
  • 22. A. Belavin, A. Polyakov, A. Schwarz, and Y. Tyupkin, Pseuvdoparticle solutions of the Yang-Mills equations, Phys. Lett. B 59 (1975), no. 1, 85-87. MR 0434183
  • 23. A. Belavin, A. Polyakov, and A. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984), no. 2, 333-380. MR 757857
  • 24. A. Buryak and P. Rossi, Double ramification cycles and quantum integrable systems, Lett. Math. Phys. 106 (2016), no. 3, 289-317. arXiv:1503.03687. MR 3462029
  • 25. J. Ding and K. Iohara, Generalization of Drinfeld quantum affine algebras, Lett. Math. Phys. 41 (1997), no. 2, 181-193. MR 1463869
  • 26. P. Etingof, Whittaker functions on quantum groups and $ q$-deformed Toda operators, arXiv:math/9901053. MR 1729357
  • 27. P. Etingof and D. Kazhdan, Quantization of Lie bialgebras: I, Selecta Math. 2 (1996), no. 1, 1-41. MR 1403351
  • 28. B. Feigin and E. Frenkel, Quantization of the Drinfeld-Sokolov reduction, Phys. Lett. B 246 (1990), no. 1-2, 75-81. MR 1071340
  • 29. B. Feigin and E. Frenkel, Duality in $ W$-algebras, Internat. Math. Res. Notices 6 (1991), 75-82. MR 1136408
  • 30. B. Feigin and E. Frenkel, Free field resolutions in affine Toda field theories, Phys. Lett. B 276 1992, no. 1-2, 79-86. MR 1153194
  • 31. B. Feigin and E. Frenkel, Affine Kac-Moody algebras at the critical level and Gelfand-Dikii algebras, Int. J. Mod. Phys. A 7 (1992), Suppl. 1A, 197-215. MR 1187549
  • 32. B. Feigin and E. Frenkel, Integrals of motion and quantum groups, Integrable systems and quantum groups (Montecatini Terme, 1993), Lecture Notes in Math., vol. 1620, Springer, Berlin, 1996, 349-418. MR 1397275
  • 33. B. Feigin and E. Frenkel, Quantum $ W$-algebras and elliptic algebras, Comm. Math. Phys. 178 (1996), no. 3, 653-677. arXiv:q-alg/9508009. MR 1395209
  • 34. B. Feigin and E. Frenkel, Quantization of soliton systems and Langlands duality, Exploring new structures and natural constructions in mathematical physics, Adv. Stud. Pure Math., vol. 61, Math. Soc. Japan, Tokyo, 2011, 185-274. MR 2867148
  • 35. B. Feigin, M. Jimbo, T. Miwa, and E. Mukhin, Representations of quantum toroidal $ \mathfrak{gl}_n$, J. Algebra 380 (2013), 78-108. MR 3023228
  • 36. B. Feigin, M. Jimbo, T. Miwa, and E. Mukhin, Quantum toroidal $ \mathfrak{gl}_1$ and Bethe ansatz, J. Phys. A 48 (2015), no. 24, 244001. arXiv:1502.07194. MR 3355243
  • 37. B. Feigin, M. Jimbo, T. Miwa, and E. Mukhin, Finite type modules and Bethe ansatz for quantum toroidal $ \mathfrak{gl}(1)$, arXiv:1603.02765.
  • 38. B. Feigin, K. Hashizume, A. Hoshino, J. Shiraishi, and S. Yanagida, A commutative algebra on degenerate $ \mathbb{CP}^1$ and Macdonald polynomials, J. Math. Phys. 50 (2009), 095215. arXiv:0904.2291. MR 2566895
  • 39. B. Feigin, K. Hashizume, A. Hoshino, J. Shiraishi, and S. Yanagida, Kernel function and quantum algebras, RIMS kokyuroku, 1689 (2010, 133-152. arXiv:1002.2485.
  • 40. B. L. Feigin and A. V. Odesskii, Quantized moduli spaces of the bundles on the elliptic curve and their applications, NATO Sci. Ser. II: Math. Phys. Chem. 35 (2001), 123-137. arXiv:9812059. MR 1873568
  • 41. B. Feigin and A. Tsymbaliuk, Bethe subalgebras of quantum affine $ U_q(\widehat {gl}_n)$ via shuffle algebras, Selecta Math. 22 (2016), no. 2, 979-101. arXiv:1504.01696. MR 3477340
  • 42. E. Frenkel and D. Ben-Zvi, Vertex algebras and algebraic curves, Math. Surv. and Monogr., vol. 88, Amer. Math. Soc., Providence, RI, 2004. MR 2082709
  • 43. E. Frenkel and N. Reshetikhin, Quantum affine algebras and deformations of the Virasoro and $ W$-algebras, Comm. Math. Phys. 178 (1996), no. 1, 237-264. arXiv:q-alg/9505025. MR 1387950
  • 44. E. Frenkel and N. Reshetikhin, Deformations of $ W$-algebras associated to simple Lie algebras, Comm. Math. Phys. 197 (1998), no. 1, 1-32. arXiv:q-alg/9708006. MR 1646483
  • 45. E. Frenkel and N. Reshetikhin, The $ q$-characters of representations of quantum affine algebras and deformations of $ W$-algebras, Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998), Contemp. Math., vol. 248, Amer. Math. Soc., Providence, 1999, 163-205. arXiv:9810055. MR 1745260
  • 46. M. Jimbo, $ q$-difference analogue of $ U(\mathfrak{g})$ and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), no. 1, 63-69. MR 797001
  • 47. B. Khesin and I. Zakharevich, Poisson-Lie group of pseudodifferential symbols, Comm. Math. Phys. 171 (1995), no. 3, 475-530. arXiv:hep-th/9312088. MR 1346170
  • 48. A. V. Litvinov, On spectrum of ILW hierarchy in conformal field theory, J. High Energy Phys. (2013), no. 11, 155. arXiv:1307.8094. MR 3132164
  • 49. D. Maulik and A. Okounkov, Quantum groups and quantum cohomology, arXiv:1211.1287.
  • 50. K. Miki, $ (q,\gamma )$ analog of the $ W_{1+\infty }$ algebra, J. Math. Phys. 48 (2007), no. 12, 3520. MR 2377852
  • 51. E. Mukhin, V. Tarasov, and A. Varchenko, Bethe algebra of homogeneous $ XXX$ Heisenberg model has simple spectrum, Comm. Math. Phys. 288 (2009), no. 1, 1-42. arXiv:0706.0688. MR 2491616
  • 52. E. Mukhin, V. Tarasov, and A. Varchenko, On separation of variables and completeness of the Bethe ansatz for quantum $ \mathfrak{gl}_N$ Gaudin model, Glasgow Math. J. 51A (2009), 137-145. arXiv:0712.0981. MR 2481232
  • 53. N. A. Nekrasov and S. L. Shatashvili, Supersymmetric vacua and Bethe ansatz, Nucl. Phys. Proc. Suppl. 192-193 (2009), 91-112. arXiv:0901.4744. MR 2570974
  • 54. N. A. Nekrasov and S. L. Shatashvili, Quantization of integrable systems and four dimensional gauge theories, XVIth International Congress on Mathematical Physics (Prague, August 2009), World Sci. Publ., Hackensack, NJ, 2010, 265-289. arXiv:0908.4052. MR 2730782
  • 55. A. Okounkov and R. Pandharipande, Quantum cohomology of the Hilbert scheme of points in the plane, Invent. Math. 179 (2010), no. 3, 523-557. arXiv:math/0411210. MR 2587340
  • 56. N. Yu. Reshetikhin and M. A. Semenov-Tian-Shansky, Central extensions of quantum current groups, Lett. Math. Phys. 19 (1990), no. 2, 133-142. MR 1039522
  • 57. N. Reshetikhin and A. Varchenko, Quasiclassical asymptotics of solutions to the KZ equations, arXiv:hep-th/9402126. MR 1358621
  • 58. J. Shiraishi, H. Kubo, H. Awata, and S. Odake, A quantum deformation of the Virasoro algebra and Macdonald symmetric functions, Lett. Math. Phys. 38 (1996), no. 1, 33-51. arXiv:q-alg/9507034. MR 1401054
  • 59. A. Tsymbaliuk, The affine Yangian of $ \mathfrak{gl}_1$ revisited, arXiv:1404.5240. MR 3558218
  • 60. A. Yu. Volkov. Quantum lattice KdV equation, Lett. Math. Phys. 39 (1997), no. 4, 313-329. arXiv:hep-th/9509024. MR 1449577

Similar Articles

Retrieve articles in Transactions of the Moscow Mathematical Society with MSC (2010): 17B37, 17B69, 17B80

Retrieve articles in all journals with MSC (2010): 17B37, 17B69, 17B80


Additional Information

Boris L. Feigin
Affiliation: National Research University Higher School of Economics, Moscow, Russia
Email: borfeigin@gmail.com

DOI: https://doi.org/10.1090/mosc/259
Keywords: Integrable system, shuffle algebra, Bethe equations, affine Lie algebra, center at the critical level, Drinfeld--Sokolov reduction, quantum group.
Published electronically: November 28, 2016
Additional Notes: This research was supported by the Russian Science Foundation (grant no. 16-11-10316).
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society