Remote Access Transactions of the Moscow Mathematical Society

Transactions of the Moscow Mathematical Society

ISSN 1547-738X(online) ISSN 0077-1554(print)



Algebraic group actions on normal varieties

Author: M. Brion
Original publication: Trudy Moskovskogo Matematicheskogo Obshchestva, tom 78 (2017), vypusk 1.
Journal: Trans. Moscow Math. Soc. 2017, 85-107
MSC (2010): Primary 14K05, 14L15, 14L30, 20G15
Published electronically: December 1, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a connected algebraic $ k$-group acting on a normal $ k$-variety, where $ k$ is a field. We show that $ X$ is covered by open $ G$-stable quasi-projective subvarieties; moreover, any such subvariety admits an equivariant embedding into the projectivization of a $ G$-linearized vector bundle on an abelian variety, quotient of $ G$. This generalizes a classical result of Sumihiro for actions of smooth connected affine algebraic groups.

References [Enhancements On Off] (What's this?)

  • [AHS08] Klaus Altmann, Jürgen Hausen, and Hendrik Süss, Gluing affine torus actions via divisorial fans, Transform. Groups 13 (2008), no. 2, 215–242. MR 2426131,
  • [Ben13] Olivier Benoist, Quasi-projectivity of normal varieties, Int. Math. Res. Not. IMRN 17 (2013), 3878–3885. MR 3096912,
  • [BB93] A.Białynicki-Birula, On induced actions of algebraic groups, Ann. Inst. Fourier. 43 (1993), no.2, 365-368.
  • [BLR90] S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron models, Ergeb. Math. Grenzgeb. (3), vol. 21, Springer-Verlag, Berlin, 1990.
  • [Bri10] M. Brion, Some basic results on actions of nonaffine algebraic groups, Symmetry and spaces, Progr. Math., vol. 278, Birkhäuser Boston, Inc., Boston, MA, 2010, pp. 1-20.
  • [Bri14] M. Brion, On actions of connected algebraic groups (2014), arxiv:1412.1906
  • [Bri15] M. Brion, On linearization of line bundles, J. Math. Sci. Univ. Tokyo 22 (2015), 113-147.
  • [Bri17] M. Brion, Some structure theorems for algebraic groups, Proc. Symp. Pure Math., vol. 94, AMS, Providence, RI, 2017, pp. 53-125.
  • [CLS11] D. Cox, J. Little, and H. Schenck, Toric varieties, Grad. Stud. Math., vol. 124, AMS, Providence, RI, 2011.
  • [Con02] B. Conrad, A modern proof of Chevalley's theorem on algebraic groups, J. Ramanujan Math. Soc. 17 (2002), no. 1, 1-18.
  • [CGP15] B. Conrad, O. Gabber, and G. Prasad, Pseudo-reductive groups, 2nd ed., New Math. Monogr., vol. 17, Cambridge Univ. Press, Cambridge, 2015.
  • [DG70] M. Demazure and P. Gabriel, Groupes algébriques, Masson, Paris, 1970.
  • [EGA] A.Grothendieck, Éléments de géométrie algébrique (rédigés avec la collaboration de J.Dieudonné): II. Étude globale élémentaire de quelques classes de morphismes, Publ. Math. IHÉS 8 (1961); III. Étude cohomologique des faisceaux cohérents, Seconde partie, ibid. 17 (1963); IV. Étude locale des schémas et des morphismes de schémas, Quatrième partie, ibid. 32 (1967).
  • [Hir62] H. Hironaka, An example of a non-Kählerian complex-analytic deformation of Kählerian complex structures, Ann. of Math. (2) 75 (1962), 190-208.
  • [Kol07] J. Kollár, Lectures on resolution of singularities, Ann. of Math. Studies, vol. 166, Princeton Univ. Press, Princeton, 2007.
  • [Kle05] S.L. Kleiman, The Picard scheme, Fundamental algebraic geometry, Math. Surv. Monogr., vol. 123, AMS, Providence, RI, 2005, pp. 235-321.
  • [Lan15] K. Langlois, Polyhedral divisors and torus actions of complexity one over arbitrary fields, J. Pure Appl. Algebra 219 (2015), no. 6, 2015-2045.
  • [LS13] A. Liendo and H. Süss, Normal singularities with torus action, Tohoku Math. J. (2) 65 (2013), no. 1, 105-130.
  • [Mil13] J. Milne, A proof of the Barsotti-Chevalley theorem on algebraic groups (2013), arxiv:1311.6060v2
  • [Miy73] M. Miyanishi, Some remarks on algebraic homogeneous vector bundles, Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki, Kinokuniya, Tokyo, 1973, pp. 71-93.
  • [Muk78] S. Mukai, Semi-homogeneous vector bundles on an abelian variety, J. Math. Kyoto Univ. 18 (1978), 239-272.
  • [Mum70] D. Mumford, Abelian varieties, Oxford Univ. Press, London, 1970.
  • [MFK94] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, Ergeb. Math. Grenzgeb. (2), vol. 34, Springer-Verlag, Berlin, 1994.
  • [Mur64] J.P. Murre, On contravariant functors from the category of preschemes over a field into the category of abelian groups, Publ. Math. IHÉS 23 (1964), 5-43.
  • [Ray70] M. Raynaud, Faisceaux amples sur les schémas en groupes et les espaces homogènes, Lecture Notes in Math., vol. 119, Springer-Verlag, New York, 1970.
  • [Ser01] J.-P. Serre, Morphismes universels et variétés d'Albanese, Exposés de séminaires (1950-1999), Doc. Math., vol. 1, Soc. Math. France, Paris, 2001, pp. 141-160.
  • [SGA1] Revêtements étales et groupe fondamental (SGA1), Séminaire de géométrie algébrique du Bois Marie 1960-1961, Doc. Math., vol.3, Soc. Math. France, Paris, 2003.
  • [SGA3] Schémas en groupes (SGA3, Tome I), Séminaire de géométrie algébrique du Bois Marie 1962-1964, Doc. Math., vol.7, Soc. Math. France, Paris, 2011.
  • [SGA5] Cohomologie $ l$-adique et fonctions $ L$ (SGA5), Séminaire de géométrie algébrique du Bois Marie 1965-1966, Lecture Notes Math, vol.589, Springer-Verlag, Berin "-- New York, 1977.
  • [Sum74] H. Sumihiro, Equivariant completion, J. Math. Kyoto Univ. 14 (1974), no. 1, 1-28.
  • [Sum75] H. Sumihiro, Equivariant completion. II, J. Math. Kyoto Univ. 15 (1975), no. 3, 573-605.
  • [Tot13] B. Totaro, Pseudo-abelian varieties, Ann. Sci. École Norm. Sup. 46 (2013), no. 5, 693-721.
  • [Wei55] A. Weil, On algebraic groups of transformations, Amer. J. Math. 77 (1955), 355-391.
  • [Wit08] O. Wittenberg, On Albanese torsors and the elementary obstruction, Math. Ann. 340 (2008), no. 4, 805-838.
  • [Wlo99] Jarosław Włodarczyk, Maximal quasiprojective subsets and the Kleiman-Chevalley quasiprojectivity criterion, J. Math. Sci. Univ. Tokyo 6 (1999), no. 1, 41–47. MR 1683254

Similar Articles

Retrieve articles in Transactions of the Moscow Mathematical Society with MSC (2010): 14K05, 14L15, 14L30, 20G15

Retrieve articles in all journals with MSC (2010): 14K05, 14L15, 14L30, 20G15

Additional Information

M. Brion
Affiliation: Université Grenoble Alpes, Institut Fourier, Grenoble

Keywords: Algebraic group actions, linearized vector bundles, theorem of the square, Albanese morphism
Published electronically: December 1, 2017
Article copyright: © Copyright 2017 M.Brion

American Mathematical Society