Remote Access Transactions of the Moscow Mathematical Society

Transactions of the Moscow Mathematical Society

ISSN 1547-738X(online) ISSN 0077-1554(print)

Request Permissions   Purchase Content 
 
 

 

Examples of lattice-polarized K3 surfaces with automorphic discriminant, and Lorentzian Kac-Moody algebras


Authors: Valery Gritsenko and Viacheslav V. Nikulin
Translated by: the authors
Original publication: Trudy Moskovskogo Matematicheskogo Obshchestva, tom 78 (2017), vypusk 1.
Journal: Trans. Moscow Math. Soc. 2017, 75-83
MSC (2010): Primary 14J15, 14J28, 14J33, 14J60, 14J81
DOI: https://doi.org/10.1090/mosc/265
Published electronically: December 1, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using our results about Lorentzian Kac-Moody algebras and arithmetic mirror symmetry, we give six series of examples of lattice-polarized K3 surfaces with automorphic discriminant.


References [Enhancements On Off] (What's this?)

  • 1. R.E. Borcherds, Generalized Kac-Moody algebras. J. Algebra 115 (1988), 501-512. MR 943273
  • 2. R.E. Borcherds, Automorphic forms on $ O_{s+2,2}(R)$ and infinite products. Invent. Math. 120 (1995), 161-213. MR 1323986
  • 3. R.E. Borcherds, The moduli space of Enriques surfaces and the fake monster Lie superalgebra. Topology 35 (1996), 699-710. MR 1396773
  • 4. D. Burns and M. Rapoport, On the Torelli problem for Kählerian K-3 surfaces. Ann. Scient. Éc. Norm. Sup. $ 4^e$ ser. 8 (1975), 235-274. MR 0447635
  • 5. J.H. Conway and N.J.A. Sloane, Sphere packings, lattices and groups. Grundlehren der mathematischen Wissenschaften 290. Springer-Verlag, New York, 1988. MR 920369
  • 6. I.V. Dolgachev, Mirror symmetry for lattice polarized K3 surfaces. Alg. Geom., 4, J. Math. Sci. 81 (1996) (see also arXiv:alg-geom/9502005). MR 1420220
  • 7. I. Dolgachev and V. Nikulin, Exceptional singularities of V.I. Arnold and K3 surfaces. Proc. USSR Topological Conference in Minsk, 1977.
  • 8. V. Gritsenko, Reflective modular forms in algebraic geometry. arXiv:math/1005.3753, 28 pp.
  • 9. V. Gritsenko and K. Hulek, Uniruledness of orthogonal modular varieties. J. Algebraic Geometry 23 (2014), 711-725. MR 3263666
  • 10. V. Gritsenko, K. Hulek, and G.K. Sankaran, Abelianisation of orthogonal groups and the fundamental varieties. J. of Algebra 322 (2009), 463-478. MR 2529099
  • 11. V.A. Gritsenko and V.V. Nikulin, K3 surfaces, Lorentzian Kac-Moody algebras and mirror symmetry. Math. Res. Lett. 3 (1996) (2), 211-229 (see also arXiv:alg-geom/9510008). MR 1386841
  • 12. V.A. Gritsenko and V.V. Nikulin, The arithmetic mirror symmetry and Calabi-Yau manifolds. Comm. Math. Phys. 210 (2000), 1-11 (see also arXiv:alg-geom/9612002). MR 1748167
  • 13. V.A. Gritsenko and V.V. Nikulin, Lorentzian Kac-Moody algebras with Weyl groups of 2-reflections. Preprint, 2016, arXiv:1602.08359, 75 pages.
  • 14. V.A. Gritsenko and V.V. Nikulin, Examples of lattice-polarized K3 surfaces with automorphic discriminant, and Lorentzian Kac-Moody algebras. Preprint, 2017, arXiv:1702.07551, 15 pages.
  • 15. V. Kac, Infinite dimensional Lie algebras. Cambridge Univ. Press, 1990. MR 1104219
  • 16. V. Kac, Lie superalgebras. Adv. Math. 26 (1977), 8-96. MR 0486011
  • 17. Vic. S. Kulikov, Degenerations of $ K3$ surfaces and Enriques surfaces. Izv. Akad. Nauk SSSR. Ser. Mat. 41 (1977), no. 5, 1008-1042; English transl. in Math. USSR Izv. 11 (1977) no. 5, 957-989. MR 0506296
  • 18. E. Looijenga, Compactifications defined by arrangements II: locally symmetric varieties of type IV. Duke Math. J. 119 (2003), no. 3, 527-588 (see also arXiv:math/0201218). MR 2003125
  • 19. Shouhei Ma, On the Kodaira dimension of orthogonal modular varieties. arXiv:1701.03225, 47 pp.
  • 20. V.V. Nikulin, Finite automorphism groups of Kähler K3 surfaces, Trudy Mosk. Mat. ob-va V. 38 (1979), 75-137; English transl. in Trans. Moscow Math. Soc. V. 38 (1980), 71-135. MR 544937
  • 21. V.V. Nikulin, Integral symmetric bilinear forms and some of their geometric applications. Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), 111-177; English transl. in Math. USSR Izv. 14 (1980). MR 525944
  • 22. V.V. Nikulin, On the quotient groups of the automorphism groups of hyperbolic forms by the subgroups generated by $ 2$-reflections. Algebraic-geometric applications. Current Problems in Math. Vsesoyuz. Inst. Nauchn. i Techn. Informatsii, Moscow 18 (1981), 3-114; English transl. in J. Soviet Math. 22 (1983), 1401-1476. MR 633160
  • 23. V.V. Nikulin, Surfaces of type K3 with finite automorphism group and Picard group of rank three. Proc. Steklov Math. Inst. 165 (1984), 113-142; English transl. in Trudy Inst. Steklov 3 (1985). MR 752938
  • 24. V.V. Nikulin, A remark on discriminants of moduli of K3 surfaces as sets of zeros of automorphic forms. Algebraic Geometry-4, Itogi nauki i techn. Ser. contemporary mathematics and applications. 33, VINITI, Moscow, 242-250; English translation in J. Math. Sci., 81:3 (1996), 2738-2743 (see also arXiv:alg-geom/9512018). MR 1420226
  • 25. I.I. Pjatetskiĭ-Sapiro and I.R. Safarevic, A Torelli theorem for algebraic surfaces of type K3. Izv. AN SSSR. Ser. mat. 35 (1971), no. 3, 530-572; English transl.: Math. USSR Izv. 5 (1971), no. 3, 547-588. MR 0284440
  • 26. Y. Siu, A simple proof ot the surjectivity of the period map of $ K3$ surfaces. Manuscripta Math. 35 (1981), no. 3, 311-321. MR 636458
  • 27. A. Todorov, Applications of the Kähler-Einstein-Calabi-Yau metric to moduli of K3 surfaces. Invent. Math. 61 (1981), no. 3, 251-265. MR 592693
  • 28. E.B. Vinberg, Classification of $ 2$-reflective hyperbolic lattices of rank $ 4$. Tr. Mosk. Mat. Obs. 68 (2007), 44-76; English transl. in Trans. Moscow Math. Soc. (2007), 39-66. MR 2429266

Similar Articles

Retrieve articles in Transactions of the Moscow Mathematical Society with MSC (2010): 14J15, 14J28, 14J33, 14J60, 14J81

Retrieve articles in all journals with MSC (2010): 14J15, 14J28, 14J33, 14J60, 14J81


Additional Information

Valery Gritsenko
Affiliation: Laboratoire Paul Painlevé et IUF, Université de Lille 1, France – and – National Research University “Higher School of Economics”, Russian Federation
Email: Valery.Gritsenko@math.univ-lille1.fr

Viacheslav V. Nikulin
Affiliation: Steklov Mathematical Institute, ul. Gubkina 8, Moscow 117966, GSP-1, Russia – and – Department of Pure Mathematics, The University of Liverpool, Liverpool L69 3BX, United Kingdom
Email: nikulin@mi.ras.ru\\ vvnikulin@list.ru\\ vnikulin@liv.ac.uk

DOI: https://doi.org/10.1090/mosc/265
Keywords: K3 surface, Picard lattice, polarization, moduli space, degeneration, discriminant, Lie algebra, Kac--Moody algebra, root system, automorphic form
Published electronically: December 1, 2017
Additional Notes: The first author was supported by Laboratory of Mirror Symmetry NRU HSE, RF government grant, ag. N 14.641.31.0001.
Dedicated: Dedicated to É. B. Vinberg on the occasion of his 80th birthday
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society