Remote Access Transactions of the Moscow Mathematical Society

Transactions of the Moscow Mathematical Society

ISSN 1547-738X(online) ISSN 0077-1554(print)

Request Permissions   Purchase Content 
 
 

 

Orbit duality in ind-varieties of maximal generalized flags


Authors: Lucas Fresse and Ivan Penkov
Translated by:
Original publication: Trudy Moskovskogo Matematicheskogo Obshchestva, tom 78 (2017), vypusk 1.
Journal: Trans. Moscow Math. Soc. 2017, 131-160
MSC (2010): Primary 14L30, 14M15, 22E65, 22F30
DOI: https://doi.org/10.1090/mosc/266
Published electronically: December 1, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We extend Matsuki duality to arbitrary ind-varieties of maximal generalized flags, in other words, to any homogeneous ind-variety $ \mathbf {G}/\mathbf {B}$ for a classical ind-group $ \mathbf {G}$ and a splitting Borel ind-subgroup $ \mathbf {B}\subset \mathbf {G}$. As a first step, we present an explicit combinatorial version of Matsuki duality in the finite-dimensional case, involving an explicit parametrization of $ K$- and $ G^0$-orbits on $ G/B$. After proving Matsuki duality in the infinite-dimensional case, we give necessary and sufficient conditions on a Borel ind-subgroup $ \mathbf {B}\subset \mathbf {G}$ for the existence of open and closed $ \mathbf {K}$- and $ \mathbf {G}^0$-orbits on $ \mathbf {G}/\mathbf {B}$, where $ \left (\mathbf {K},\mathbf {G}^0\right )$ is an aligned pair of a symmetric ind-subgroup $ \mathbf {K}$ and a real form $ \mathbf {G}^0$ of $ \mathbf {G}$.


References [Enhancements On Off] (What's this?)

  • [1] A. A. Baranov: Finitary simple Lie algebras. J. Algebra 219 (1999), 299-329. MR 1707673
  • [2] M. Berger: Les espaces symétriques non compacts. Ann. Sci. École Norm. Sup. 74 (1957) 85-177. MR 0104763
  • [3] M. Brion and G. Helminck: On orbit closures of symmetric subgroups in flag varities. Canad. J. Math. 52 (2000), 265-292. MR 1755778
  • [4] I. Dimitrov and I. Penkov: Ind-varieties of generalized flags as homogeneous spaces for classical ind-groups. Int. Math. Res. Not. 2004 (2004), 2935-2953. MR 2099177
  • [5] L. Fresse and I. Penkov: Schubert decompositions for ind-varieties of generalized flags. Asian J. Math., to appear.
  • [6] S. Gindikin and T. Matsuki: Stein extensions of Riemannian symmetric spaces and dualities of orbits on flag manifolds. Transform. Groups 8 (2003), 333-376. MR 2015255
  • [7] G. Fels, A. Huckleberry, and J. A. Wolf: Cycle spaces of flag domains. A complex geometric viewpoint. Progr. Math., vol. 245, Birkhäuser, Boston, MA, 2006. MR 2188135
  • [8] M. V. Ignatyev and I. Penkov: Ind-varieties of generalized flags: a survey of results. Preprint (2016).
  • [9] M. V. Ignatyev, I. Penkov, and J. A. Wolf: Real group orbits on flag ind-varieties of $ \mathrm {SL}(\infty ,\mathbb{C})$. In: Lie Theory and Its Applications in Physics, pp. 111-135. Springer Proc. Math. Stat., vol. 191, Springer, Singapore, 2016. MR 3613922
  • [10] J. C. Jantzen: Nilpotent orbits in representation theory. Lie theory, 1-211, Progr. Math., vol. 228, Birkhäuser Boston, Boston, MA, 2004. MR 2042689
  • [11] T. Matsuki: The orbits of affine symmetric spaces under the action of minimal parabolic subgroups. J. Math. Soc. Japan. 31 (1979) 331-357. MR 527548
  • [12] T. Matsuki: Closure relations for orbits on affine symmetric spaces under the action of parabolic subgroups. Intersections of associated orbits. Hiroshima Math. J. 18 (1988) 59-67. MR 935882
  • [13] T. Matsuki and T. Oshima: Embeddings of discrete series into principal series. In: The orbit method in representation theory (Copenhagen, 1988), pp. 147-175. Progr. Math., vol. 82, Birkhäuser, Boston, MA, 1990. MR 1095345
  • [14] K. Nishiyama: Enhanced orbit embedding. Comment. Math. Univ. St. Pauli 63 (2014), 223-232. MR 3328431
  • [15] A. L. Onishchik and È. B. Vinberg: Lie groups and algebraic groups. Translated from the Russian and with a preface by D. A. Leites. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin, 1990. MR 1064110
  • [16] T. Ohta: The closures of nilpotent orbits in the classical symmetric pairs and their singularities. Tohoku Math. J. 43 (1991), 161-211. MR 1104427
  • [17] T. Ohta: An inclusion between sets of orbits and surjectivity of the restriction map of rings of invariants. Hokkaido Math. J. 37 (2008), 437-454. MR 2441911
  • [18] R. W. Richardson and T. A. Springer: The Bruhat order on symmetric varieties. Geom. Dedicata 35 (1990), 389-436. MR 1066573
  • [19] J. A. Wolf: The action of a real semisimple Lie group on a complex flag manifold. I: Orbit structure and holomorphic arc components. Bull. Amer. Math. Soc. 75 (1969), 1121-1237. MR 0251246
  • [20] J. A. Wolf: Cycle spaces of infinite dimensional flag domains. Annals of Global Analysis and Geometry 50 (2016), 315-346. MR 3573989
  • [21] A. Yamamoto: Orbits in the flag variety and images of the moment map for classical groups I. Represent. Theory 1 (1997), 329-404. MR 1479152

Similar Articles

Retrieve articles in Transactions of the Moscow Mathematical Society with MSC (2010): 14L30, 14M15, 22E65, 22F30

Retrieve articles in all journals with MSC (2010): 14L30, 14M15, 22E65, 22F30


Additional Information

Lucas Fresse
Affiliation: Université de Lorraine, CNRS, Institut Élie Cartan de Lorraine, UMR 7502, Vandoeuvre-lès-Nancy, F-54506 France
Email: lucas.fresse@univ-lorraine.fr

Ivan Penkov
Affiliation: Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
Email: i.penkov@jacobs-university.de

DOI: https://doi.org/10.1090/mosc/266
Keywords: Classical ind-groups, generalized flags, symmetric pairs, rest forms, Matsuki duality.
Published electronically: December 1, 2017
Additional Notes: The first author was supported in part by ISF Grant Nr. 797/14 and by ANR project GeoLie (ANR-15-CE40-0012).
The second author was supported in part by DFG Grant PE 980/6-1.
Dedicated: To Ernest Borisovich Vinberg on the occasion of his 80th birthday
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society