Remote Access Transactions of the Moscow Mathematical Society

Transactions of the Moscow Mathematical Society

ISSN 1547-738X(online) ISSN 0077-1554(print)

Request Permissions   Purchase Content 


An estimate for the average number of common zeros of Laplacian eigenfunctions

Authors: Dmitri Akhiezer and Boris Kazarnovskii
Translated by: the authors
Original publication: Trudy Moskovskogo Matematicheskogo Obshchestva, tom 78 (2017), vypusk 1.
Journal: Trans. Moscow Math. Soc. 2017, 123-130
MSC (2010): Primary 53C30, 58J05
Published electronically: December 1, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: On a compact Riemannian manifold $ M$ of dimension $ n$, we consider $ n$ eigenfunctions of the Laplace operator $ \Delta $ with eigenvalue $ \lambda $. If $ M$ is homogeneous under a compact Lie group preserving the metric then we prove that the average number of common zeros of $ n$ eigenfunctions does not exceed $ c(n)\lambda ^{n/2}{\rm vol}\,M$, the expression known from the celebrated Weyl's law. Moreover, if the isotropy representation is irreducible, then the estimate turns into the equality. The constant $ c(n)$ is explicitly given. The method of proof is based on the application of Crofton's formula for the sphere.

References [Enhancements On Off] (What's this?)

  • [1] D. Akhiezer, B. Kazarnovskii, On common zeros of eigenfunctions of the Laplace operator, Abh. Math. Sem. Univ. Hamburg 87, no. 1 (2017), 105-111, DOI:10.1007/s12188-016-0138-1. MR 3623828
  • [2] J.- C. Álvarez Paiva, E. Fernandes, Gelfand transforms and Crofton formulas, Selecta Math., vol. 13, no. 3 (2008), pp. 369-390. MR 2383600
  • [3] V. I. Arnold (ed.), Arnold's Problems, Springer, 2005. MR 2078115
  • [4] S. Y. Cheng, Eigenfunctions and nodal sets, Comment. Math. Helvetici 51 (1976), pp. 43-55. MR 0397805
  • [5] R. Courant and D. Hilbert, Methods of Mathematical Physics, I, Interscience Publishers, New York, 1953. MR 0065391
  • [6] S. Gallot, D. Hulin, J. Lafontaine, Riemannian Geometry, Third Edition, Springer, 2004. MR 2088027
  • [7] I. M. Gelfand, M. M. Smirnov, Lagrangians satisfying Crofton formulas, Radon transforms, and nonlocal differentials, Advances in Math.109, no. 2 (1994), pp. 188-227. MR 1304752
  • [8] V. M. Gichev, Metric properties in the mean of polynomials on compact isotropy irreducible homogeneous spaces, Anal. Math. Phys. 3, no. 2 (2013), pp. 119-144. MR 3057234
  • [9] R. Howard, The kinematic formula in Riemannian homogeneous spaces, Mem. Amer. Math. Soc. 106, no. 509, 1993. MR 1169230
  • [10] V. Ivrii, 100 years of Weyl's law, Bulletin of Mathematical Sciences,vol. 6, no. 3 (2016), pp. 379 - 452. MR 3556544
  • [11] O. V. Manturov, Homogeneous Riemannian spaces with an irreducible rotation group, Trudy Semin. Vekt. Tenz. Anal. 13 (1966), pp. 68-146 (Russian). MR 0210031
  • [12] L. A. Santaló, Integral Geometry and Geometric Probability, Addison-Wesley, 1976. MR 0433364
  • [13] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18, no. 4 (1966), pp. 380 -385. MR 0198393
  • [14] J. A. Wolf, The geometry and structure of isotropy irreducible homogeneous spaces, Acta Mathematica 120 (1968), pp. 59-148. MR 0223501

Similar Articles

Retrieve articles in Transactions of the Moscow Mathematical Society with MSC (2010): 53C30, 58J05

Retrieve articles in all journals with MSC (2010): 53C30, 58J05

Additional Information

Dmitri Akhiezer
Affiliation: Institute for Information Transmission Problems 19 B. Karetny per., 127994, Moscow, Russia

Boris Kazarnovskii
Affiliation: Institute for Information Transmission Problems 19 B. Karetny per., 127994, Moscow, Russia

Keywords: Homogeneous Riemannian manifold, Laplace operator, Crofton formula
Published electronically: December 1, 2017
Additional Notes: The research was carried out at the Institute for Information Transmission Problems under support by the Russian Foundation of Sciences, grant No. 14-50-00150
Dedicated: To Ernest Borisovich Vinberg on the occasion of his 80th birthday
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society