
The World of Blind
Mathematicians

1246 NOTICES OF THE AMS VOLUME 49, NUMBER 10

A visitor to the Paris apartment of the blind geome-
ter Bernard Morin finds much to see. On the wall
in the hallway is a poster showing a computer-
generated picture, created by Morin’s student
François Apéry, of Boy’s surface, an immersion of
the projective plane in three dimensions. The sur-
face plays a role in Morin’s most famous work, his
visualization of how to turn a sphere inside out.
Although he cannot see the poster, Morin is happy
to point out details in the picture that the visitor
must not miss. Back in the living room, Morin grabs
a chair, stands on it, and feels for a box on top of
a set of shelves. He takes hold of the box and
climbs off the chair safely—much to the relief of
the visitor. Inside the box are clay models that
Morin made in the 1960s and 1970s to depict
shapes that occur in intermediate stages of his
sphere eversion. The models were used to help a
sighted colleague draw pictures on the blackboard.
One, which fits in the palm of Morin’s hand, is a
model of Boy’s surface. This model is not merely
precise; its sturdy, elegant proportions make it a
work of art. It is startling to consider that such a
precise, symmetrical model was made by touch
alone. The purpose is to communicate to the sighted
what Bernard Morin sees so clearly in his mind’s
eye.

A sighted mathematician generally works by sit-
ting around scribbling on paper: According to one
legend, the maid of a famous mathematician, when
asked what her employer did all day, reported that
he wrote on pieces of paper, crumpled them up, and
threw them into the wastebasket. So how do blind
mathematicians work? They cannot rely on back-
of-the-envelope calculations, half-baked thoughts
scribbled on restaurant napkins, or hand-waving ar-
guments in which “this” attaches “there” and “that”
intersects “here”. Still, in many ways, blind math-
ematicians work in much the same way as sighted
mathematicians do. When asked how he juggles
complicated formulas in his head without being

able to resort to paper and pencil, Lawrence W.
Baggett, a blind mathematician at the University of
Colorado, remarked modestly, “Well, it’s hard to do
for anybody.” On the other hand, there seem to be
differences in how blind mathematicians perceive
their subject. Morin recalled that, when a sighted
colleague proofread Morin’s thesis, the colleague
had to do a long calculation involving determi-
nants to check on a sign. The colleague asked Morin
how he had computed the sign. Morin said he
replied: “I don’t know—by feeling the weight of the
thing, by pondering it.”

Blind Mathematicians in History
The history of mathematics includes a number of
blind mathematicians. One of the greatest mathe-
maticians ever, Leonhard Euler (1707–1783), was
blind for the last seventeen years of his life. His eye-
sight problems began because of severe eyestrain
that developed while he did cartographic work as
director of the geography section of the St. Pe-
tersburg Academy of Science. He had trouble with
his right eye starting when he was thirty-one years
old, and he was almost entirely blind by age fifty-
nine. Euler was one of the most prolific mathe-
maticians of all time, having produced around 850
works. Amazingly, half of his output came after his
blindness. He was aided by his prodigious mem-
ory and by the assistance he received from two of
his sons and from other members of the St. Peters-
burg Academy.

The English mathematician Nicholas Saunderson
(1682–1739) went blind in his first year, due to
smallpox. He nevertheless was fluent in French,
Greek, and Latin, and he studied mathematics. He
was denied admission to Cambridge University
and never earned an academic degree, but in 1728
King George II bestowed on Saunderson the Doc-
tor of Laws degree. An adherent of Newtonian phi-
losophy, Saunderson became the Lucasian Profes-
sor of Mathematics at Cambridge University, a
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position that Newton himself had held and that is
now held by the physicist Stephen Hawking. Saun-
derson developed a method for performing arith-
metic and algebraic calculations, which he called
“palpable arithmetic”. This method relied on a de-
vice that bears similarity to an abacus and also to
a device called a “geoboard”, which is in use nowa-
days in mathematics teaching. His method of pal-
pable arithmetic is described in his textbook Ele-
ments of Algebra (1740). It is possible that
Saunderson also worked in the area of probability
theory: The historian of statistics Stephen Stigler
has argued that the ideas of Bayesian statistics
may actually have originated with Saunderson,
rather than with Thomas Bayes [St].

Several blind mathematicians have been
Russian. The most famous of these is Lev Semen-
ovich Pontryagin (1908–1988), who went blind at
the age of fourteen as the result of an accident. His
mother took responsibility for his education, and,
despite her lack of mathematical training or knowl-
edge, she could read scientific works aloud to her
son. Together they fashioned ways of referring to
the mathematical symbols she encountered. For ex-
ample, the symbol for set intersection was “tails
down”, the symbol for subset was “tails right”, and
so forth. From the time he entered Moscow Uni-
versity in 1925 at age seventeen, Pontryagin’s math-
ematical genius was apparent, and people were
particularly struck by his ability to memorize com-
plicated expressions without relying on notes. He
became one of the outstanding members of the
Moscow school of topology, which maintained ties
to the West during the Soviet period. His most in-
fluential works are in topology and homotopy the-
ory, but he also made important contributions to
applied mathematics, including control theory.
There is at least one blind Russian mathematician
alive today, A. G. Vitushkin of the Steklov Institute
in Moscow, who works in complex analysis.

France has produced outstanding blind mathe-
maticians. One of the best known is Louis Antoine
(1888–1971), who lost his sight at the age of twenty-
nine in the first World War. According to [Ju], it was
Lebesgue who suggested Antoine study two- and
three-dimensional topology, partly because there
were at that time not many papers in the area and
partly because “dans une telle étude, les yeux de
l’esprit et l’habitude de la concentration rem-
placeront la vision perdue” (“in such a study the
eyes of the spirit and the habit of concentration will
replace the lost vision”). Morin met Antoine in the
mid-1960s, and Antoine explained to his younger
fellow blind mathematician how he had come up
with his best-known result. Antoine was trying to
prove a three-dimensional analogue of the Jordan-
Schönflies theorem, which says that, given a
simple closed curve in the plane, there exists a
homeomorphism of the plane that takes the curve

into the standard circle. What Antoine tried to
prove is that, given an embedding of the two-sphere
into three-space, there is a homeomorphism of
three-space that takes the embedded sphere into
the standard sphere. Antoine eventually realized
that this theorem is false. He came up with the first
“wild embedding” of a set in three-space, now
known as Antoine’s necklace, which is a Cantor set
whose complement is not simply connected. Using
Antoine’s ideas, J. W. Alexander came up with his
famous horned sphere, which is a wild embedding
of the two-sphere in three-space. The horned sphere
provides a counterexample to the theorem Antoine
was trying to prove. Antoine had proved that one
could get the sphere embedding from the necklace,
but when Morin asked him what the sphere em-
bedding looked like, Antoine said he could not vi-
sualize it.

Everting the Sphere
Morin’s own life story is quite fascinating. He was
born in 1931 in Shanghai, where his father worked
for a bank. Morin developed glaucoma at an early
age and was taken to France for medical treatment.
He returned to Shanghai, but then tore his retinas
and was completely blind by the age of six. Still,
he has a stock of images from his sighted years and
recalls that as a child he had an intense interest in
optical phenomena. He remembers being capti-
vated by a kaleidescope. He had a book about col-
ors that showed how, for example, red and yellow
mix together to produce orange. Another memory
is that of a landscape painting; he remembers look-
ing at the painting and wondering why he saw
three dimensions even though the painting was
flat. His early visual memories are es-
pecially vivid because they were
not replaced by more images as
he grew up.

After he went blind, Morin
left Shanghai and returned to
France permanently. There he
was educated in schools for the
blind until age fifteen,
when he entered a reg-
ular lycée. He was in-
terested in mathe-
matics and philos-
ophy, and his fa-
ther, thinking his
son would not do
well in mathemat-
ics, steered Morin
toward philoso-
phy. After study-
ing at the École
N o r m a l e
Supérieure for a
few years, Morin

Leonhard
Euler
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became disillusioned with philosophy and switched
to mathematics. He studied under Henri Cartan
and joined the Centre National de la Recherche
Scientifique as a researcher in 1957. Morin was al-
ready well known for his sphere eversion and had
spent two years at the Institute for Advanced Study
by the time he finished his Ph.D. thesis in singu-

larity theory in 1972,
under the direction of
René Thom. Morin spent
most of his career teach-
ing at the Université de
Strasbourg and retired in
1999.

It was in 1959 that
Stephen Smale proved the
surprising theorem that
all immersions of the n-
sphere into Euclidean
space are regularly ho-
motopic. His result im-
plies that the standard
embedding of the two-
sphere into three-space is
regularly homotopic to
the antipodal embedding.
This is equivalent to say-
ing that the sphere can be
everted, or turned inside
out. However, construct-
ing a sphere eversion fol-
lowing the arguments in
Smale’s paper seemed to

be too complicated. In the early 1960s, Arnold
Shapiro came up with a way to evert the sphere,
but he never published it. He explained his method
to Morin, who was already developing similar ideas
of his own. Physicist Marcel Froissart was also in-
terested in the problem and suggested a key sim-
plification to Morin; it was for the collaboration with
Froissart that Morin created his clay models. Morin
first exhibited a homotopy that carries out an ever-
sion of the sphere in 1967.

Charles Pugh of the University of California at
Berkeley used photographs of Morin’s clay models
to construct chicken wire models of the different
stages of the eversion. Measurements from Pugh’s
models were used to make the famous 1976 film
Turning a Sphere Inside Out. Created by Nelson Max,
now a mathematician at Lawrence Livermore Na-
tional Laboratory, the film was a tour de force of
computer graphics available at that time. Morin ac-
tually had two different renditions of his sphere
eversion, and at first he was not sure which one ap-
peared in the film. He asked some of his colleagues
who had seen the film which rendition was de-
picted. “Nobody could answer,” he recalled.

Since the making of Max’s film, other sphere
eversions have been developed, and new movies

depicting them have been made. One eversion was
created by William Thurston, who found a way to
make Smale’s original proof constructive. This
eversion is depicted in the film Outside In, made
at the Geometry Center [OI]. Another eversion orig-
inated with Rob Kusner of the University of Mass-
achusetts at Amherst, who suggested that energy-
minimization methods could be used to generate
Morin’s eversion. Kusner’s idea is depicted in a
movie called The Optiverse, created in 1998 by the
University of Illinois mathematicians John M.
Sullivan, George Francis, and Stuart Levy [O]. Sculp-
tor and graphics animator Stewart Dickson used the
Optiverse numerical data to make models of dif-
ferent stages of the optiverse eversion, for a pro-
ject called “Tactile Mathematics” (one aim of the
project is to create models of geometric objects for
use by blind people). Some of the optiverse mod-
els were given to Morin during the International Col-
loquium on Art and Mathematics in Maubeuge,
France, in September 2000. Morin keeps the mod-
els in his living room.

Far from detracting from his extraordinary vi-
sualization ability, Morin’s blindness may have en-
hanced it. Disabilities like blindness, he noted, re-
inforce one’s gifts and one’s deficits, so “there are
more dramatic contrasts in disabled people,” he
said. Morin believes there are two kinds of math-
ematical imagination. One kind, which he calls
“time-like”, deals with information by proceeding
through a series of steps. This is the kind of imag-
ination that allows one to carry out long compu-
tations. “I was never good at computing,” Morin re-
marked, and his blindness deepened this deficit.
What he excels at is the other kind of imagination,
which he calls “space-like” and which allows one
to comprehend information all at once.

One thing that is difficult about visualizing geo-
metric objects is that one tends to see only the out-
side of the objects, not the inside, which might be
very complicated. By thinking carefully about two
things at once, Morin has developed the ability to
pass from outside to inside, or from one “room”
to another. This kind of spatial imagination seems
to be less dependent on visual experiences than on
tactile ones. “Our spatial imagination is framed by
manipulating objects,” Morin said. “You act on ob-
jects with your hands, not with your eyes. So being
outside or inside is something that is really con-
nected with your actions on objects.” Because he
is so accustomed to tactile information, Morin can,
after manipulating a hand-held model for a couple
of hours, retain the memory of its shape for years
afterward.

Geometry: Pure Thinking
At a meeting at the Mathematisches Forschungsin-
stitut Oberwolfach in July 2001, Emmanuel Giroux
presented a lecture on his latest work entitled

Bernard Morin with one of
Stewart Dickson’s models, at the
International Colloquium on Art
and Mathematics in Maubeuge,

France, in September 2000.
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“Contact structures and open book decomposi-
tions”. Despite Giroux’s blindness—or maybe be-
cause of it—he gave what was probably the clear-
est and best organized lecture of the week-long
meeting. He sat next to an overhead projector, and
as he put up one transparency after another, it
was apparent that he knew exactly what was on
every transparency. He used his hands to schemat-
ically illustrate his precise description of how to
attach one geometric object to the boundary of
another. Afterwards some in the audience recalled
other lectures by Giroux, in which he described, with
great clarity, certain mathematical phenomena as
evolving like the frames in a film. “In part it’s my
way of doing things, my style” to try to be as clear
as possible, Giroux said. “But also I’m often ex-
tremely frustrated because other mathematicians
don’t explain what they are doing at the board and
what they write.” Thus the clarity of his lectures is
in part a reaction against hard-to-understand lec-
tures by sighted colleagues, who can get away with
being less organized.

Giroux has been blind since the age of eleven.
He notes that most blind mathematicians are or
were working in geometry. But why geometry, the
most visual of all areas of mathematics? “It’s pure
thinking,” Giroux replied. He explained that, for ex-
ample, in analysis, one has to do calculations in
which one keeps track line-by-line of what one is
doing. This is difficult in Braille: To write, one must
punch holes in the paper, and to read one must turn
the paper over and touch the holes. Thus long
strings of calculations are hard to keep track of (this
burden may ease in the future, with the develop-
ment of “paperless writing” tools such as refresh-
able Braille displays). By contrast, “in geometry, the
information is very concentrated, it’s something you
can keep in mind,” Giroux said. What he keeps in
mind is rather mysterious; it is not necessarily pic-
tures, which he said provide a way of representing
mathematical objects but not a way of thinking
about them.

In [So], Alexei Sossinski points out that it is not
so suprising that many blind mathematicians work
in geometry. The spatial ability of a sighted person
is based on the brain analyzing a two-dimensional
image, projected onto the retina, of the three-di-
mensional world, while the spatial ability of a blind
person is based on the brain analyzing information
obtained through the senses of touch and hearing.
In both cases, the brain creates flexible methods
of spatial representation based on information
from the senses. Sossinski points out that studies
of blind people who have regained their sight show
that the ability to perceive certain fundamental
topological structures, like how many holes some-
thing has, are probably inborn. “So a blind person
who has regained his eyesight can at first not dis-
tinguish between a square and a circle,” Sossinski

writes. “He just sees their topological equivalence.
On the other hand he sees immediately that a torus
is not a ball.” In a private communication, Sossin-
ski also noted that sighted people sometimes have
misconceptions about three-dimensional space
because of the inadequate and misleading two-
dimensional projection of space onto the retina.
“The blind person (via his other senses) has an un-
deformed, directly 3-dimensional intuition of
space,” he said.

As noted in [Ja], attempts to understand spatial
ability have a long history going back at least to the
time of Plato, who believed that all people, blind
or sighted, have the same ability to understand spa-
tial relations. Based on the ability of the visually
impaired to learn shapes through touch, Descartes,
in Discours de la méthode (1637), argued that the
ability to create mental representational frame-
works is innate. In the late eighteenth century,
Diderot, who involved blind people in his research,
concluded that people can gain a good sense of
three-dimensional objects through touch alone. He
also found that changes in scale presented few
problems for the blind, who “can enlarge or shrink
shapes mentally. This spatial imagination often
consisted of recalling and recombining tactile sen-
sations [Ja].” In recent decades, much research has
been devoted to investigating the spatial abilities
of blind people. The prevailing view was that the
blind have weaker or less efficient spatial abilities
than the sighted. However, research such as that
presented in [Ja] challenges this view and appears
to indicate that, for many ordinary tasks such as
remembering a walking route, the spatial abilities
of blind and sighted people are the same.

Challenges of Analysis
Not all blind mathematicians are geometers. Despite
the formidable challenges analysis presents to the
blind, there are a number of blind analysts, such
as Lawrence Baggett, who has been on the faculty
of the University of Colorado at Boulder for thirty-
five years. Blind since the age of five, Baggett liked
mathematics as a youngster and found he could do
a lot in his head. He never learned the standard al-
gorithm for long division because it was too clumsy
to carry out in Braille. Instead, he figured out his
own ways of doing division. There were not many
textbooks in Braille, so he depended on his mother
and his classmates reading to him. Initially he
planned to become a lawyer “because that’s what
blind people did in those days.” But once he was
in college, he decided to study mathematics.

Baggett says he has never been very good in
geometry and cannot easily visualize complicated
topological objects. But this is not because he is
blind; in visualizing, say, a four-dimensional sphere,
he said, “I don’t know why being able to see makes
it any easier.” When he does mathematics, he
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sometimes visualizes formulas and schematic, sug-
gestive pictures. When he is tossing around ideas
in his head, he sometimes makes Braille notes, but
not very often. “I try to say it aloud,” he explained.
“I pace and talk to myself a lot.” Working with a
sighted colleague helps because the colleague can
more easily look up references or figure out what
a bit of notation means; otherwise, Baggett said, col-
laboration is the same as between two sighted
mathematicians. But what about, say, going to the
blackboard to draw a picture or to do a little cal-
culation? “They do that to me too!” Baggett said with
a laugh. The collaborators simply describe in words
what is on the board.

Baggett does not find his ability to calculate in
his head to be extraordinary. “My feeling is that
sighted mathematicians could do a lot in their
heads too,” he remarked, “but it’s handy to write
on a piece of paper.” A story illustrated his point.
At a meeting Baggett attended in Poland in the
dead of winter, the lights in the lecture hall sud-
denly died. It was completely dark. Nevertheless,
the lecturer said he would continue. “And he did
integrals and Fourier transforms, and people were
following it,” Baggett recalled. “It proved a point:
You don’t need the blackboard, but it’s just a handy
device.”

Blind mathematics professors have to come up
with innovative methods for teaching. Some write
on the blackboard by writing the first line at eye
level, the next at mouth level, the next at neck
level, and so on. Baggett uses the blackboard, but
more for pacing the lecture than for systemati-
cally communicating information the students are
expected to write down. In fact, he tells them not
to copy what he writes but rather to write down
what he says. “My boardwork is just an attempt to
make the class as much like a normal lecture as pos-
sible,” he remarked. “Many of [the students] decide
they have to learn a different way in my class, and
they do.” He makes up exams in TEX and has a Web
page for homework problems and other informa-
tion. For grading, he can use graders “but I lose

personal feedback,” so he uses a variety of schemes,
such as having students present oral reports on
their work. It is clear that Baggett’s devotion to
teaching and concern for students overcome any
limitations imposed by his disability.

Means of Communicating
When he was growing up in Argentina in the 1950s,
Norberto Salinas, who has been blind since age
ten, found, just as Baggett did, that the standard
profession for blind people was assumed to be
law. As a result, there was no Braille material in
mathematics and physics. But his parents would
read aloud and record material for him. His fa-
ther, a civil engineer, asked friends in mathemat-
ics and physics at the University of Buenos Aires
whether his son could take the examination to
enter the university. After Salinas got the maximum
grade, the university agreed to accept him. In a con-
tribution to a Historia-Mathematica online discus-
sion group about blind mathematicians, Eduardo
Ortiz of Imperial College, London, recalled exam-
ining Salinas in an analysis course at University of
Buenos Aires. Salinas communicated graphical in-
formation by drawing pictures on the palm of
Ortiz’s hand, a technique that Ortiz himself later
used when teaching blind students at Imperial.
Salinas taught mathematics in Peru for a while and
then went to the United States to get his Ph.D. at
the University of Michigan. Today he is on the fac-
ulty of the University of Kansas.

Salinas said that he would often translate taped
material into Braille, a step that helped him to ab-
sorb the material. He developed his own version of
a Braille code for mathematical symbols and in the
1960s helped to design the standard code for rep-
resenting such symbols in Spanish Braille. In the
United States, the standard code for mathematical
symbols in Braille is the Nemeth code, developed in
the 1940s by Abraham Nemeth, a blind mathemat-
ics and computer science professor now retired
from the University of Detroit. The Nemeth code em-
ploys the ordinary six-dot Braille codes to express
numbers and mathematical symbols, using special
indicators to set mathematical material off from lit-
erary material. Standard Braille was clearly not in-
tended for technical material, for it does not provide
representations for even the most common techni-
cal symbols; even integers must be represented by
the codes for letters (a = 1, b = 2, c = 3, etc.). The
Nemeth code can be difficult to learn because the
same characters that mean one thing in literary
Braille have different meanings in Nemeth. Never-
theless it has been extremely important in helping
blind people, especially students, gain access to sci-
entific and technical materials. Salinas and John
Gardner, a blind physicist at Oregon State Univer-
sity, have developed a new code called GS8, which
uses eight dots instead of the usual six. The two

Lawrence Baggett.
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additional dots, which are reserved for mathemati-
cal notation, provide the possibility of representing
255 characters rather than the sixty-three that are
possible in standard Braille. In addition, the syntax
of GS8 is based on LATEX, making it feasible to con-
vert GS8 documents into LATEX, and vice versa.

Computers have opened up a whole world of
communication possibilities for blind people.
Screen reader programs, such as Jaws or SpeakUp,
translate text on-screen into spoken words using
speech synthesizers. Unfortunately, these pro-
grams generally do not work well with text con-
taining mathematical symbols, and some blind
mathematicians tend to use the programs only for
reading email or surfing the Web (which is be-
coming more complicated for the blind due to the
heavy use of graphics). A blind computer scientist
at Cornell University, T. V. Raman, has developed
a program called AsTeR, which accepts a TEX file
as input and as output produces an audio file that
contains a synthesized vocalization of the docu-
ment, mathematics and all. Gardner has developed
a program called TRIANGLE that has a speech syn-
thesizer that is more basic than AsTeR and also in-
cludes a program for converting between LATEX and
the GS8 code.

Some blind mathematicians actually read TEX
source files directly; Giroux does so using a
refreshable Braille touch-screen. He said it is more
comfortable to have an audio recording of a paper,
but before having a recording made, he wants to
know whether the paper is really interesting to
him. Reading TEX files provides quick and direct ac-
cess to the documents. Of course, TEX files are
meant to be read by computers rather than humans
and are therefore cumbersome and verbose. Nev-
ertheless, Giroux said that their easy availability
through electronic preprint servers and journals
represents “huge progress” in his ability to stay in
touch with current research. Books are a bigger
problem than papers; although TEX is the standard
way of publishing mathematics books, obtaining the
TEX files from publishers is not a straightforward
process.

Mathematics Accessible to the Blind
It is easy to understand how well-meaning people
who know little about mathematics might assume
that the subject’s technical notation would create
an insurmountable barrier for blind people. But in
fact, mathematics is in some ways more accessible
for the blind than other professions. One reason
is that mathematics requires less reading because
mathematical writing is compact compared to other
kinds of writing. “In mathematics,” Salinas noted,
“you read a couple of pages and get a lot of food
for thought.” In addition, blind people often have
an affinity for the imaginative, Platonic realm of
mathematics. For example, Morin remarked that

sighted students are usually taught in such a way
that, when they think about two intersecting planes,
they see the planes as two-dimensional pictures
drawn on a sheet of paper. “For them, the geome-
try is these pictures,” he said. “They have no idea
of the planes existing in their natural space.” Be-
cause blind students do not use drawings, it is nat-
ural for them to think about the planes in an ab-
stract way.

The most famous blind American mathematician
right now may be Zachary J. Battles, whose extra-
ordinary story was even covered in People maga-
zine. Blind almost from birth and adopted from a
South Korean orphanage when he was three years
old, Battles went on to earn a bachelor’s degree in
mathematics and a bachelor’s and master’s in com-
puter science from Pennsylvania State University.
He also traveled to Ukraine twice to teach English
as a second language and worked as a mentor for
other disabled students. He is now studying math-
ematics at the University of Oxford on a Rhodes
Scholarship. Like so many other blind mathemati-
cians, Battles is an inspiration to the sighted and
the blind alike.

—Allyn Jackson
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