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Opinion

A Request: The
Painleve Project

In recent years the Painlevé equations, particularly the six
Painlevé transcendents PI,...,PVI, have emerged as the core
of modern special function theory. In the eighteenth and
nineteenth centuries, the classical special functions such
as the Bessel functions, the Airy function, the Legendre
functions, the hypergeometric functions, and so on, were
recognized and developed in response to the problems
of the day in electromagnetism, acoustics, hydrodynam-
ics, elasticity, and many other areas. In the same way,
around the middle of the twentieth century, as science
and engineering continued to expand in new directions, a
new class of functions, the Painlevé functions, started to
appear in applications. The list of problems now known
to be described by the Painlevé equations is large, varied,
and expanding rapidly. The list includes, at one end, the
scattering of neutrons off heavy nuclei, and at the other,
the statistics of the zeros of the Riemann-zeta function on
the critical line Re z =1/2. And in between, among many
others, there is random matrix theory, the asymptotic
theory of orthogonal polynomials, self-similar solutions
of integrable equations, combinatorial problems such
as Ulam’s longest increasing subsequence problem, til-
ing problems, multivariate statistics in the important
asymptotic regime where the number of variables and the
number of samples are comparable and large, and also
random particle systems.

Random matrix theory is a common portal for the Pain-
levé equations into science and engineering. A striking re-
cent example is the discovery that the statistics of the bus
delivery system in Cuernavaca, Mexico, is described with
remarkable accuracy by random matrix theory: The bus
delivery system in Cuernavaca has particular distinguish-
ing features and is a prototype for the bus transportation
system in many cities in Latin America. Equally striking
is the recent experimental verification of random matrix
behavior in turbulent liquid crystal growth.

Over the years, the properties of the classical special
functions—algebraic, analytical, asymptotic, and nu-
merical—have been organized and tabulated in various
handbooks such as the Bateman Project or the National
Bureau of Standards Handbook of Mathematical Func-
tions, edited by Abramowitz and Stegun. What is needed
now is a comparable organization and tabulation of the
properties—algebraic, analytical, asymptotic, and numeri-
cal—of the Painlevé functions. This letter is an appeal to
interested parties in the scientific community at large for
help in developing such a “Painlevé Project”. What we have
in mind will be described below.

Although the Painlevé equations are nonlinear, much
is already known about their solutions, particularly their
algebraic, analytical, and asymptotic properties. This is
because the equations are integrable in the sense that they
have a Lax-Pair and also a Riemann-Hilbert representation
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from which the asymptotic behavior of the solutions can
be inferred using the nonlinear steepest-descent method.
The numerical analysis of the equations is less developed
and presents novel challenges; in particular, in contrast to
the classical special functions, where the linearity of the
equations greatly simplifies the situation, each problem
for the nonlinear Painlevé equations arises essentially
anew.

As a first step in the Painlevé Project, we have estab-
lished an e-site, maintained at the National Institute of
Standards and Technology (NIST). We ask interested read-
ers to send to the site

(1) pointers to new work on the theory of the Painlevé
equations, algebraic, analytical, asymptotic, or numerical;

(2) pointers to new applications of the Painlevé equa-
tions;

(3) suggestions for possible new applications of the
Painlevé equations;

(4) requests for specific information about the Painlevé
equations.

The e-site will work as follows:

(1) You must be a “subscriber” to post messages to the
e-site. To become a subscriber, send email to daniel.
lozier@nist.gov.

(2) To post amessage after becoming a subscriber, send
email to PainleveProject@nist.gov. The message will
be forwarded to every subscriber.

(3) See|http://cio.nist.gov/esd/emaildir/lists/|
[painleveproject/threads.html|for the complete ar-
chive of posted messages. This archive is visible to anyone,
not just subscribers.

(4) See|http://cio.nist.gov/esd/emaildir/1ists/|
[painTeveproject/subscribers.htm] for the complete
list of subscribers. This list is visible to anyone, not just
subscribers.

Depending on the response to our appeal, we plan to
set up a Wiki page for the Painlevé equations, and then
ultimately a comprehensive handbook in a style befitting
our digital age, along the lines of the hyperlinked version
(http://dImf.nist.goV) of the new NIST Handbook of
Mathematical Functions, edited by Olver, Lozier, Boisvert,
and Clark and published by Cambridge University Press.
Incidentally, this work contains, for the first time, a chap-
ter on the Painlevé equations.

—F. Bornemann, Technical University Munich
bornemann@ma. tum.de

P. Clarkson, Kent University
P.A.Clarkson@kent.ac.uk

P. Deift, Courant Institute, NYU
deift@cims.nyu.edu

A. Edelman, MIT

edelman@nit.edu

A. Its, IUPUI

itsa@math.iupui.edu

D. Lozier, NIST
daniel.Tlozier@nist.gov

1389


http://cio.nist.gov/esd/emaildir/lists/painleveproject/threads.html
http://cio.nist.gov/esd/emaildir/lists/painleveproject/threads.html
http://cio.nist.gov/esd/emaildir/lists/painleveproject/subscribers.html
http://cio.nist.gov/esd/emaildir/lists/painleveproject/subscribers.html
http://dlmf.nist.gov

Letters to the Editor

Ignore the Statement, Not the
Teaching

I found Rainer Schulze-Pillot’s strong
objections to teaching statements in
“Ethics and the plagiarized teaching
statement” in the September 2010
Notices to be somewhat compelling
and perhaps worthy of the strong
language that the author uses. Un-
fortunately, I believe the author’s
argument, as it appears in the letter,
perpetuates an illogic that has far
greater negative consequences to our
profession than forcing new Ph.D.s to
write a brief statement about teach-
ing. The author writes, “We shouldn’t
try to hire a gifted salesperson but an
able mathematician.” Really? Doesn’t
the request for a teaching statement
as part of the application process
suggest the hiring committee cares
about their new hire’s potential as
a teacher? If so, I suggest that many
(most?) of these hiring committees
shouldn’t try to hire simply a gifted
mathematician but an able teacher
as well. The problem is much deeper
than the teaching statement. It tran-
scends the entire way we prepare
new Ph.D.s as well as how we nurture
and reward effective teaching in the
academe.

—Julian F. Fleron
Westfield State College
jfleron@wsc.ma.edu

(Received August 31, 2010)

On the Iceland Map in an AMS
Ad

For some months the AMS has been
running an ad in the Notices (and
doubtless elsewhere) which irks me.
In the August issue it is on page 839,
comparing “A World Without Math-
ematics” (an older map of Iceland)
to “A World With Mathematics” (a
modern image of the Earth).

It strikes me that the Iceland map
is astonishingly detailed and accurate
for one of its age (the sea monsters
notwithstanding), and indeed nearly
every hit for “old map Iceland” on
my usual search engine yields some
variant of this map. It (and the many
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copies that followed) appears to be
produced by Abraham Ortelius in
1590, based on a now-lost original by
Gudbrandur Thorlaksson, a bishop
in Iceland.

I am no expert, but Eli Maor and
his historian friends tell me that quite
a bit of mathematics is involved in
such cartography (especially trigo-
nometry). So I don't see any reason
to doubt the claim made on various
websites (such as|http://kort.
|bok.hi.is/)) that “The map is so
superior to all earlier maps of Iceland
in content and execution...[Thorlaks-
son] had studied mathematics and
astronomy alongside theology. He
had calculated the position of Holar
and arrived at an amazingly accurate
result.” (Apparently his grandson was
also quite the astronomer/cartogra-
pher and made an even better map
several decades later.)

Obviously the Iceland map is made
with less sophisticated mathematics
than the image of the Earth. However,
if geodesy was something Gauss
could do without losing his status as
a mathematician, perhaps the AMS
should be picking something actually
done without mathematics to depict
“A World Without Mathematics”.

—Karl-Dieter Crisman
Gordon College

(Received August 31, 2010)

The Gateway Arch

The Notices arrives in Australia sev-
eral months after publication so for-
give the lateness of my comment.

It concerns the fact that I am an
Australian. However, I have friends
in St. Louis and I have visited the
marvelous Gateway Arch. I assumed
the article was concerned with this
arch but the connections were less
than explicit. The note at the end con-
firms the connection with St. Louis.
I wonder how many of your readers,
especially those outside of the U.S,,
knew what the title of the article in
the February Notices referred to?

It seems that here was a missed
opportunity to give real interest to
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the mathematics with a photo of the
arch and a few short words about it.

—Jan Thomas

Australian Mathematical
Sciences Institute
jan.thomas@amsi.org.au

(Received August 31, 2010)

Correction

The article “The public lectures
in Hyderabad” in the November
2010 issue of the Noticesincluded
a reference to the book Proofs
from the Book. Unfortunately,
the name of one of the book’s
authors, Martin Aigner, was mis-
spelled in the article. The Notices
apologizes for this error.

Submitting Letters to the
Editor

The Notices invites readers
to submit letters and opinion
pieces on topics related to math-
ematics. Electronic submis-
sions are preferred (notices-
Tetters@ams.org); see the mast-
head for postal mail addresses.
Opinion pieces are usually one
printed page in length (about 800
words). Letters are normally less
than one page long, and shorter
letters are preferred.
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High School Students
Compete for $10,000

f’l am sure | can speak for everyone
Involved when I say that this was the
best math competition we have ever
been a part of, Many thanks to all of
you for that wonderful happening.”

Come see the national
Who Wants to Be a
Mathematician at the

2011 Joint Mathematics
Meetings in New Orleans.
High school students from
across the U.S. will compete

WWW'amS.org/thbam fora top prize of $10,000.
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Gravity’s Action on Light

A. O. Petters

In memory of Vladimir Arnold and David Blackwell

ravitational lensing is the action of
gravity on light. The subject has be-
come a vibrant area in astronomy and
mathematical physics with great pre-
dictive power. The field cuts across
geometry, topology, probability, and singularity
theory and interconnects mathematics, physics,

and astrophysics.

The first part of this article gives an intro-
duction to the subject with a review of standard
results. The rest of the paper brings the reader to
the mathematical forefront of the subject with a
treatment of some recent research findings and un-
solved problems. In addition, the interdisciplinary
features of gravitational lensing are highlighted
through the following topics: stability and gener-
icity in lens systems, deterministic and stochastic
aspects of image counting, local and global ge-
ometry of caustics and cosmic shadow patterns,
and magnification relations for stable caustics.
We add that the article on lensing by Khavinson
and Neumann [40] in the June/July 2008 Notices
complements this one and was focused primarily
on the link between the maximum number of ze-
ros of complex rational harmonic functions and
the gravitational lensing problem of the maximum

number of lensed images.
Our story begins with Einstein.

Arlie Petters (AP) is professor of mathematics, physics,
and business administration at Duke University. His email
address is arlie.petters@duke.edu. He is thankful
to Amir Aazami, Charles Keeton, Alberto Teguia, and
Marcus Werner for constructive feedback on the article
and acknowledges partial support from NSF grant DMS-
0707003 and hospitality at the Petters Research Institute,

where part of this work was done.

1392 NOTICES OF THE AMS

Einstein and Gravitational Lensing

Even before completing his general theory of rel-
ativity, Einstein [25] had explored by 1911 how
strongly gravity would bend light grazing a celes-
tial body and implored astronomers to search the
heavens for this effect: “It would be highly desir-
able that astronomers take up the question raised
here, even if the considerations should seem to be
insufficiently founded or entirely speculative.”

It was not until the completion of general
relativity in 1915 that Einstein obtained the correct
formula for light’s bending angle by a static
spherically symmetric compact body of mass m:

(1) &(r) ~ 40
r

where m, = Gm/c? (gravitational radius of lens)
with G the universal gravitational constant, c
the speed of light, and r the distance of closest
approach of the light ray to the center of the lens.

Today we know that Einstein’s approximate
bending angle formula (1) is the first term in a
series (Keeton and AP 2005 [36]):

(2)

2 3
ar = ()« 2 () - 4 ()
m.\* m.\° m.\°

+A4(b) +A5<b) +0(b) ’
where b is called the impact parameter and A, = 4,
A, = 151/4, A3 = 128/3, A, = 34651/64, and
As = 3584/5. The distance r of closest ap-
proach in (1) is coordinate dependent, whereas
the quantities b and m. are coordinate indepen-
dent. Consequently, the series (2) is coordinate
independent.

The 1919 observational confirmation of the
light bending angle equation (1) for the case of

VOLUME 57, NUMBER 11



CASTLES

Figure 1. Top row: Einstein predicted that double images (left panel, outer bright spots) will occur
if the light source (bright spot between the outer two) is off the line of sight and lensed by an
intermediate compact body (large blue spot). He also argued that if the source is on the line of
sight, the source will appear as a bright ring, known today as an Einstein ring (right panel).
Bottom row: An observed example of double-lensed images (left panel) and an Einstein ring
image (right panel) of lensed quasars. The “I” and “H” refer to the infrared wavelength bands
used for the observations. Credits: Schoendorf (Duke Magazine) and CASTLES [18].

lensing by the sun gave observational support
to Einstein’s gravitational theory over Newtonian
gravity. It made Einstein a household name and
marked the first observation of gravitational lens-
ing. Einstein also discovered two remarkable
lensing properties, which he published in 1936
in a short Science article [26]. He showed that
double images can occur when a background light
source is off the line of sight. When the source is
on the line of sight, a highly magnified ring-like
image, now called an Einstein ring, can form; see
Figure 1.

Einstein was very skeptical that these effects
would be observed and, upon the urging of
the Czech engineer Rudi Mandl, he reluctantly
published the article [54, p. 7]. Fortunately, the
advancement of technology over the next four
decades set the foundation for the first obser-
vation in 1979 of double images of a lensed
quasar. This serendipitous breakthrough discov-
ery by Walsh, Carswell, and Weymann [72] marked
the transformation of gravitational lensing from
an arena of purely theoretical speculation to a
data-driven science!

Today, observations of gravitational lensing
signatures in the universe abound. Earth- and
space-borne telescopes have found multiple im-
ages, rings, arcs, and highly magnified images of
lensed sources. For lensing by galaxies, data from
lens samples like CASTLES [18], SQLS [70], and
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SLACS [69] reveal scores of examples of multiply
imaged quasars and observed ring/arc systems.

Gravitational Lensing Framework
The Space-Time Geometry

The light rays in gravitational lensing are modeled
by null geodesics that ride the geometry of space-
time. The Einstein equation is the physical law
governing the interplay between the space-time’s
geometry and its mass-energy content (lenses).
Lensing effects arise when multiple light rays have
different arrival times at a given spatial location,
light rays converge to create caustics, infinitesimal
bundles of light rays experience expansion and/or
contraction due to the Ricci curvature and shearing
due to the Weyl tensor, etc. These effects are far
too complicated to address here in a general
space-time framework; see Perlick [48]. We restrict
ourselves to the space-time setting relevant to
astronomical observations.

Most gravitational lenses can be modeled using
the static, thin-lens, weak-deflection approxima-
tion, because the observer-lens distance' d; and
lens-light source distance d; s are significantly
larger than the diameter of the lens and because
the bending angles are much less than unity (e.g.,

L The issue of distance in cosmology is a story unto itself.
In fact, the distances in gravitational lensing are typically
angular diameter distances; see [66, Sec. 4.5] for details.
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less than an arcminute) [54]. Examples of such
lenses are planets, stars like our Sun, and galaxies.
This approximation fails for lensing near a black
hole because bending angles can exceed 360 de-
grees! Amazingly, however, the static, thin-lens,
weak-deflection approximation is unmatched in
the power of its predictions that are accessible to
current and near-future instrumentation.

Figure 2 illustrates the above approximation,
where L is the lens plane and S = R? is the light
source plane. The (scaled) positions x and y in the
figure are given by x = r/d; and y = s/ds, where
r is the vector of impact of the light ray in the
lens plane, s is the position of the light source on
the light source plane S, and d; and ds are the
respective distances from the observer to L and S.
Note that dg > d; > |r| in a typical astrophysical
setting.

Lens Plane

S/ | Light Source L
Plane

Observer

Figure 2. Schematic of thin-lens,
weak-deflection single plane gravitational
lensing. The dashed line through the origin is
the optical axis of the lens system.

The space-time geometry for a static,” thin-lens,
weak-deflection lens has a metric of the form:

2 . . 2
8weak = — (1 + T?) de* + az(t) (1 - T(f) ) 8Euc,

where |¢p|/c®> < 1. Here t = ¢T, with ¢ the speed
of light and T cosmological time. The function
a(t) accounts for the expansion of the universe.
The metric gg, is the standard Euclidean metric
on R3 and ¢ is the time-independent, three-
dimensional Newtonian potential of the lens with
corresponding mass density concentrated about
the lens plane. In astrophysical applications, the
metric gweak i computed only to first order in

¢/c?.

2The static condition means that physically the lens has
negligible change over the time interval during which the
lensing effect is being observed.
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Deflection Potential

In physical modeling of the lens system in Figure 2,
the three-dimensional Newtonian potential ¢ of
the lens is “projected” into the lens plane L,
creating a two-dimensional Newtonian potential
@ of the lens in L (since the lens is thin and
bending angles are small); see [66, Chap. 4] for
details. The projected potential  is called the
deflection potential and defined by:

2ds JQ
CZdeS % ¢(dLXl C) dgy

where (x, C) are rectangular coordinates covering
the region of space containing the lens system, the
C-axis coincides with the optical axis of the lens
system, and Cj, C, are the respective C-locations
of the observer and light source plane.

Lensing by y produces a weak-deflection bend-
ing angle generalizing Einstein’s bending angle (1)
or, equivalently, the first term in (2), to:

Y(x) =

. d
&(dpx) = KSS Vy(x),

where the gradient operator V is relative to
rectangular coordinates x = (u,v) on the lens
plane. The physical bending angle is & = |&l.
Note that a point mass deflection potential,
namely, @ (x) = mlog |x| with m = 4(dps/c?ds)m,
produces Einstein’s bending angle (1).

More formally, the deflection potential is a
smooth function ¢ : L — R, where L = R> — A
models the lens plane, with A a finite set of points
representing possible singularities in the lens. The
surface mass density k due to  is determined by
the two-dimensional Poisson equation:

K(x) = %VZLIJ(X),

which is the Einstein equation in the present
two-dimensional context. The density k causes
the expansion or contraction of cross-sections
of infinitesimal light ray bundles. Similarly, the
gravitational tug due to matter produces shearing
across such bundles. The shear due to y is a
rank two symmetric trace-free tensor in L, whose
independent components (I3 (x), I, (x)) are defined
by:

I (x) = % [Wau () = Yoy (0], T(X) = Wy (X).

The subscripts indicate partial derivatives relative
to (u,v). The magnitude of the shear tensor is

defined as I = /I + I3.

Example: Microlensing Potential. This lens mod-
els a local region of a galaxy lens using three
physical components: (1) a collection of g stars
with masses m,,...,m, at respective positions
&1,...,&,, (2) acontinuous matter component with
constant density k. > 0 from dark matter, and
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(3) a constant shear y > 0 from the overall grav-
itational pull of the rest of the galaxy across the
local region. The deflection potential and surface
mass density of the lens are given respectively by:

L

g
5 u? —v2) + > mjlog |x — &l

K,
Py(x) = f\XI2 -
j=1

and
Kg(x) =TT (mlésl(x) +eet mgégg(X)) + Ke,

where &, (x) is the Dirac delta centered at &;. The
set of singularities of Y, is A = {¢&1,...,&,}. The
y term contributes to the deflection potential y,
through a harmonic function and, hence, does not
appear in the expression for k,. Also, the magni-
tude I of the shear tensor converges to the shear
from infinity y as |x| — o. The deflection potential
Y4 typically generates lensed images with angular
separations of approximately a micro-arcsecond.
For this reason, lensing by g, is called microlens-

ing.

Time-Delay Function

The deflection potential ¢ induces a family of
functions T : L XS — R, called a time-delay family,
defined by:

_x-yP
2

where S = R?is thelight source plane (Figure 2) and
y € S. Each function Ty : L - R Ty(x) = T(X,y)
in the family T is called a time-delay function
at y. Physically, the value Ty (x) is proportional
to the arrival time difference measured by the
observer between a deflected ray traveling from
y to the observer with impact vector x and a ray
traveling from y to the observer in the absence
of lensing. The arrival time of the unlensed ray
enters the time-delay function as a constant and is
used simply for convenience. Adding a constant to
Ty (x) has no impact on lensing observables, since
they arise from either differences of the time-delay
function at lensed images or partial derivatives of
the time-delay function [54, Sec. 3.4].

By Fermat’s principle [54, p. 66], the light rays
connecting y to the observer have impact vectors
given by the critical points® of Ty, i.e., solutions x
in L of

(3) VIy(x) =0,

T(x,y)

-y x),

where V is relative to the x coordinates. The light
rays will correspond generically to either minima,
maxima, or saddles of the time-delay function.

3Generally, we define a critical point of a smooth map f
from an n-manifold )N to an m-manifold M to be a point
x € N, whererank[dxf] < min{n, m}.
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Lensing Map and Lensed Images

Every time-delay family T induces a transfor-
mation n : L — S, called a lensing map, as
follows:

nx) =VE(x) +y=x- Vy(x),

where V is the x-gradient. A light ray from y to
the observer is then characterized by a solution x
in L of the lens equation

4) nx) =y.

The action of p has a simple intuitive interpretation
via its lens equation. Reverse the light ray in
Figure 2 and imagine the light ray being shot like
a cannon ball from the observer to the lens plane.
The ray impacts the lens plane at x and gets
deflected at x by the gravity of the matter lens
there, causing the ray to hit the light source plane
aty.

The lensed images of a light source at y are
then defined to be elements of the fiber ! (y). By
the bijection between solutions of (3) and (4), we
can naturally identify each lensed image of y with
its associated critical point of Ty. Consequently,
when Ty is nondegenerate, we can assign a Morse
index iy to a lensed image x of y, namely, iy = 0,
1, and 2, respectively, for x a minimum, saddle,
and maximum lensed image. The parity of a
lensed image x is defined as the evenness or
oddness of iy for nondegenerate Ty. A positive
parity (respectively, negative parity) lensed image
is one with an even (respectively, odd) parity. The
lensed images in Figure 2 form a positive-negative
parity pair; one is a minimum lensed image and
the other a saddle.

Magnification of Lensed Images

The magnification My (x) of a lensed image x of a
light source at y is given physically as the ratio of
the flux of the image to the flux of the light source
in the absence of lensing. It can be shown that:
1

| det[Jacn](x)|’
Magnification is a geometric invariant because
M, (x) is the reciprocal of the Gaussian curvature
at the critical point (x, Ty (x)) in the graph of Ty.
A lensed image x of y is magnified if My(x) > 1
and demagnified when My(x) < 1. The signed
magnification of a lensed image x of y is py (x) =
(—1)xMy(x), where n(x) = y and ix is the Morse
index of x. The total magnification of a light source
atyis

My (x) = nx) =y.

Mia(y) = > My(x).
xen~Hy)

The critical point type of a lensed image has
physical relevance. Minimum lensed images are
never demagnified (Schneider 1984 [64]) and, in
fact, are typically magnified in real systems [66,

54]. A minimum lensed image X,;; cannot have an
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arbitrary position relative to the lens but is always
located where the lens’s surface mass density k is
subcritical, 0 < kK (Xmin) < 1, and its magnitude of
shear is not supercritical, 0 < I'(Xpin) < 1.

A maximum lensed image X« is situated where
the surface mass density of thelensis supercritical,
K(Xmax) > 1. For example, a maximum lensed
image produced by a galaxy lens would be located
near the dense nucleus of the galaxy, causing the
image to be highly demagnified, hence difficult to
observe.

No restrictions are known for the positions
of saddle lensed images due to general lenses.
However, computer simulations of microlensing
show that saddle lensed images have a tendency
to congregate near the positions of point masses;
see [54, Sec. 11.6] for a mathematical result on the
trajectories of saddle lensed images.

Critical Curves and Caustics

The set of critical points of n is the locus of all x
in L where det[Jacn](x) = 0. This corresponds to
the set of all formally infinitely magnified lensed
images of all light source positions in the light
source plane S. A curve of critical points is called
a critical curve of n. The set of caustics of n is
the set of critical values of m, which is the set
of all light source positions giving rise to at least
one infinitely magnified lensed image. The set of
caustics of » has measure zero. For a point mass
lens, which Einstein studied in 1936 [26], the set
of critical points forms a circle called an Einstein
ring, and the set of caustics is a single point; see
Figure 1.

Multiplane Lensing Framework

The single-plane lensing extends naturally to k
lens planes as depicted in Figure 3.

Let ¢; : L; — R be the deflection potential on
the ith lens plane L;, set Lxy = L1 X - - - X Ly, and
let Xk 1 = Y. A k-plane time-delay family induced

lens plane light source
lens plane plane

lens plane

Figure 3. A schematic of multiplane lensing in
the static, thin-lens, weak-deflection
approximation. Credits: [54, p. 196].
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o Caustics
Critical curves

Figure 4. Critical curves and caustics in
multiplane lensing. Note the cusp points and
fold arcs on the caustics. Credits: [54, p. 203].

by these deflection potentials is the function
T : Ly X S — R defined by

X — X 1?
2
where ; and B; are constants involving physical
aspects (e.g., distances) of the lens system. The
k-plane lensing map generated by Ty, iS a map
of the form ny) : P € L; — S, where P = R> — B
with B the set of light ray obstruction points,
namely, the set of all points in R? through which
a backwards traced light ray is obstructed from
reaching the light source plane (e.g., if a light
ray impacts a star). The notions of lensed image,
magnification, critical points, and caustics carry

over naturally to the k-plane case.

k
T (X1, X, Y) = . 9 [ - Billli(xi)]
i=1

Remark. The lensing map n) is generated by the
time-delay family Ty, in a manner similar to how
Lagrangian maps are formed from their generating
family of functions or catastrophe maps are pro-
duced from their generating unfoldings. In fact,
the Lagrangian map or catastrophe map induced
by T, is differentiably equivalent to 7).

Gravitational Lensing Software

A publicly available extensive lensing software

is GRAVLENS, which was developed by Kee-

ton: |[http://redfive.rutgers.edu/~keeton/|
gravlens/. The software computes positions,

magnifications, and time delays of lensed images

for both point and extended light sources and

for essentially arbitrary mass distributions in the

lens. The forthcoming version 2.0 (expected 2010)

will do stochastic lensing and k-plane lensing.

Stability and Genericity in Lensing

Often astronomers develop intuition into lensing
from the analysis of overly simplified analytical
models. There is then a need for general theoret-
ical lensing results that capture the properties of
lens systems that are shared by most such sys-
tems and that persist even under the many small
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perturbations affecting these systems in their cos-
mic environment. We desire a characterization of
the generic, stable features of k-lens systems that
are independent of the specific fine details of the
system.

A generic property in a space4 of maps is a
property common to all maps in an open dense
subset of the space. Of course, a precise definition
of stability is beyond the scope of this article, so
we shall employ an informal characterization; see
[30] and [54, Chap. 7] for rigorous treatments.

Intuitively, a lensing map n, is “locally stable”
if any sufficiently small perturbation 74 of ny,
(not necessarily a linear perturbation) has the
same local critical point structure as 7k up to a
coordinate change. It can be shown that a lensing
map ) is locally stable if and only if its caustics
are locally either fold arcs or cusp points. In
this case, the set of critical points form disjoint
nonself-intersecting curves (critical curves), whose
total number we can bound in some cases (e.g.,
Theorem 8). Note that the lensing map of a point
mass lens, which was studied by Einstein in 1936
[26], is not locally stable because the caustic is
a point, though the critical curve is a circle; see
Figure 1.

A lensing map nw, is transverse stable if and
only if n, is locally stable and its caustics curves
are “stably distributed”, namely, each intersection
of fold arcs occurs at a nonzero angle, no more
than two fold arcs cross at the same point, no fold
arc passes through a cusp point, and no two cusp
points coincide.

The theorem below, which was established in
the monograph [54] by AP, Levine, and Wamb-
sganss, characterizes the generic properties of
k-plane lens systems:

Theorem 1. [54, p. 311] Let T, be the space of
all k-plane time-delay families Ty : Ly X S — R
and let Tfy, be the subset of T of all k-plane time-
delay families whose lensing maps are transverse
stable. Then T}, is open and dense in Ty,.

A sketch of the proof of Theorem 1 is beyond
the scope of this article. It utilizes the technical
machinery of multijet transversality to singularity
manifolds. Theorem 1 implies that among the
vast array of gravitational lens systems in the
cosmos that fall within the static, thin-lens, weak-
deflection approximation, the associated lensing
map is typically transverse stable. In addition,
for a dense subset of light source positions, the
corresponding lensed images are either minima,
maxima, or generalized saddles, no matter how
complex the lens system; see [54, Chap. 8].

We assume that a space of maps between smooth mani-
folds has the Whitney C* topology.
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Image Counting

As early as 1912 [61], Einstein had found that a
lens consisting of a single star (point mass) will
produce two lensed images of a background star
that is not on a caustic. For two point masses on
the same lens plane, Schneider and Weiss 1986
[67] employed lengthy, intricate calculations to
show that this lens produces three or five lensed
images of alight source not on a caustic. Naturally,
one would like to know how many lensed images
are produced by g stars or, generally, by a generic
gravitational lens system.

In 1991 AP [49] addressed the image counting
problem using Morse theory under boundary con-
ditions A and B to obtain counting formulas and
a minimum for the total number of images due
to a generic k-plane gravitational lens system. An
added benefit from the Morse theoretic approach
is that it applies to generic k-plane lensing and
generalizes naturally to Lorentzian manifolds; see
Perlick [48] and references therein.

For simplicity, we present a sample of image
counting results due only to lensing by point
masses (stars).

Theorem 2. [49] If a light source, not on a caustic,
undergoes single-plane lensing by g point masses,
then:

(1) There are no maximum lensed images.
(2) The total number N of lensed images obeys:

N =2Npin + g — 1 =2Ngq — g + 1,

where Npin and Ng.qa are the number
of minimum and saddle lensed images,
respectively.

(3) The minimum value of N is g + 1.

The counting formula in Theorem 2 is useful
for checking whether software that numerically
searches the lens equation for microimages has
overlooked some—e.g.,a system with 10, 000 stars
has more than that many microimages. The count-
ing formula also shows that the total number of
lensed images is even (odd) if and only if the
number of point masses is odd (even).

For the maximum number of lensed images,
Rhie 2003 [62] constructed an example of lens-
ing by g point masses that produce 5g — 5
lensed images for g > 2, which she conjec-
tured is the maximum possible; see [57] for a
brief history. Khavinson and Neumann 2006 [39]
settled the conjecture by translating the problem
into determining the maximum number of zeros
of a complex rational harmonic function of the
form r(z) — zZ, where r(z) = p(z)/q(z) with
p(z) and q(z) relatively prime polynomials and
degr = max{degp, degq} = g. We note that Kuz-
nia and Lundberg 2009 [41] studied the case where
¥(z) is a Blaschke product and found a maximum
of g + 3 zeros.
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Theorem 3. [62, 39] A light source, not on a caus-
tic, that is lensed by g point masses on a single lens
plane has a maximum number of lensed images of
59 -5 forg = 2.

By Theorems 2 and 3, wehaveg+1 < N < 5g-5
for g > 2, which yields that two point masses will
produce three, four, or five lensed images. But N
has parity (evenness or oddness) opposite to g,
so four images cannot be produced. Hence, we
immediately recover the result in [67] that two
stars produce three or five images of a light source
not on a caustic.

The multiplane analogue of Theorem 2 is:

Theorem 4. [49, 51] If a light source, not on a caus-
tic, undergoes k-plane lensing by point masses with
gi point masses on the ith lens plane, then:

(1) There are no maximum lensed images.
(2) Thetotalnumber N of lensed images obeys:

k k
N=2N,-[[(1-g) =2N_+]]A-ap,
i=1 i=1
where N. is the number of even/odd index
lensed images.
(3) The minimum value of N is ]_[le(g,- +1).

Theorem 4 immediately shows that if any lens
plane has only one point mass, then the total
number of lensed images is always even. This is
complemented by the fact that there is an odd
number of lensed images due to k-plane lensing by
nonsingular lenses [49, 51].

No multiplane analogue of Theorem 3 exists as
of the writing of this article. However, an upper
bound was found by AP [53] in 1997 using a
resultant approach:

Theorem 5. [53] If a light source, not on a caustic,
is lensed by g point masses distributed in space with
one point mass on each lens plane, then the number
of images is bounded as follows:

29 <N <2 (220D -1),
where the lower bound is sharp (attainable).

The sharp lower bound in Theorem 5 follows
from Theorem 4(3) sinceg; =1 fori=1,...,g.

Open Problem 1. Determine the maximum num-
ber of lensed images due to g point masses dis-
tributed in space with one point mass on each lens
plane.

There is no global maximum number of lensed
images due to lensing by general nonsingular grav-
itational lenses. This is because one can always
add an appropriate smooth mass clump to a non-
singular lens to produce extra images. Note that a
global minimum exists for the number of lensed
images due to multiplane singular lenses with
time-delay functions satisfying Morse boundary
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conditions A. In fact, the global minimum is also
given by Theorem 4(3) [51].

A maximum number of lensed images due to
nonsingular lenses can be found in certain special
cases. For example, in 2007 Fassnacht, Keeton,
and Khavinson proved that an elliptical uniform
mass distribution produces a maximum of four
images external to the lens [29]. Khavinson and
Lundberg 2010 [37] showed that multiple imag-
ing by finitely many disjoint radially symmetric
disc lenses is more complex than was originally
thought by constructing an example with five
such lenses that surprisingly produces twenty-
seven lensed images, where twenty-five images
would have been expected. Khavinson and Lund-
berg 2010 [38] also showed that there are at most
eight external lensed images due to an elliptic lens
with isothermal density, which was followed by
recent work of Bergweiler and Eremenko 2010 [14]
proving that the maximum number is actually six.
This problem involved studying zeros of complex
transcendental harmonic functions as opposed to
the complex rational harmonic functions found in
microlensing.

Open Problem 2. Determine the maximum num-
ber of lensed images due to elliptical isothermal
lenses distributed over multiple lens planes.

Stochastic Gravitational Lensing

In lensing we often do not know the positions
of stars, the locations of dark matter clumps,
etc.,, and have to treat such components of a
lens system as random. For these situations, the
induced time-delay family and its lensing map are
random and connect naturally with the geometry
of random fields.

The theory of random fields has been developed
largely around the tractable case of Gaussian fields.
Interested readers may consult, for example, the
seminal works of Adler, Berry, Hannay, Longuet-
Higgins, Nye, Taylor, Upstill, Worsham, etc.; see
[5], [6], [7], [15]. Interestingly, the key random
fields in gravitational lensing are, in general, not
Gaussian.

Non-gaussianity and Stochastic Microlensing

Consider a random microlensing deflection poten-
tial ¢4, where all the point masses have the same
mass m; = m and their positions &; are indepen-
dent and uniformly distributed in the disc B(0, R)
of radius R = \/g/m centered at the origin of the
lens plane. Let Ty,, my, and G, = (I 4,154) be,
respectively, the single-plane time-delay function,
lensing map, and pair of shear tensor components
due to the given @,. Set Ty, (X) = Ty 4(x) +gmlog R
and n} (x) = n,(x)/ylog g. Denote the probability
density functions (p.d.f.’s) of Ty, (x), n; (%), and
Gg (x) by fT{/’fg(X)’ fm}k (x)s and ng(X)’ respeCtiVQIY-
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AP, Teguia, and Rider 2009 [55, 56] showed:

Theorem 6. [55, 56] For the above random mi-
crolensing deflection potential g4, the p.d.f.’s
fr;g(o), fn;(x), and fc,x), where x € B(0,R), are
not Gaussian for g = 1,2,.... As g — oo, the
asymptotic forms are:

(D fr,00 M = famg (O + 0(1/g%?)
(2) 3 (K) = faog () [1 + Eg()] + O(1/10g )
(3) fay00(8) = feng(8)[1+ Hy(g)] + O(1/6%),

where fomg, fosg, and fcng are gamma, bivariate
Gaussian, and stretched bivariate Cauchy densi-
ties, respectively. See [55, 56] for explicit forms of
the integrable functions E,; and H,.

To illustrate a random mn,, let k. = 0.405,
y = 0.3, and k., = tm = 0.045. In [55] it was
shown that when g is a million, there is a 56%
probability that the random lensing map 7, :
L — S will map a point xg = (up,Vy) in L to
a point inside a disc of angular radius r, = 0.1
centered at ag = ((1 — k¢ + y)ug, (1 — Ke + ¥)vp)).
The probability jumps to 97% for mapping X,
inside a radius 27y centered at ao.

Global Expectation and the Kac-Rice Formula

For a random time-delay function Ty, let N, (D,y)
be the random number of positive parity lensed
images inside a closed disk D in the lens plane. Un-
der appropriate physically reasonable conditions,
the theory of random fields [5, 6] yields that the
expectation of N, (D,y) can be obtained using a
Kac-Rice type formula [56]:

(5) EIN.(D,y)] =
L)E [det[]acn](x) 1g, (%) ‘ n(x) = Y] frx (y)dx,
where 1, is the indicator function on
Ga = {x € R?: det[Jacn](x) € (0,)},

and f,,x is the p.d.f. of the lensing map at x.

For most applications, equation (5) is insuffi-
cient because the light source position y is not
known and so is a random vector. It is physically
natural then to generalize (5) by averaging out the
light source position. This introduces the notion
of “global expectation”. Let {$§} be a countable
compact covering of S where every $ has the
same positive Lebesgue measure |$,|. Construct a
family {Ys} of random light source positions Y,
where Ys is uniformly distributed on 5. The global
expectation of the number of positive parity lensed
images will be denoted by E[N, (D,Y;5)];s; and
defined to be the mean of E[N.(D,y)] over the
family {Ys}.

AP, Rider, and Teguia 2009 [56] used the Kac-
Rice technology to obtain:
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Theorem 7. [56] The global expectation of the
number of positive parity lensed images in D is:

EIN,(D,Y;$)]s; =
1 J E[det[Jacn] (x) 1g,(x)] dx.
‘5()‘ D

Theorem 7 applies to generic lensing scenarios.
Furthermore, the theorem is not merely formal
because it can be used to calculate the global
expected number of minimum lensed images in
stochastic microlensing. For example, it was shown
in [56] that if g = 1000, Kot = Kc + Ky« = 0.45, and
(y, k) varies over the physically reasonable values
(0.n,0.n), where n = 1,2,3,4, then the global
expected number of minimum microimages is
between one and three even though there are
over 1,000 microimages. Hence, there are few
minimum lensed images compared to saddles for
these parameters. Bear in mind, however, that the
global expected mean number of minimum lensed
images is divergent for (1 — kiot)? = y°.

Open Problem 3. Develop a general mathematical
theory of stochastic gravitational lensing.

Initial steps were taken in [55, 56] for stochastic
microlensing and in [33] for the case of lensing by
randomly distributed dark matter clumps in galax-
ies, but a vast array of statistical and probabilistic
issues remain unexplored.

Caustics
Counting Caustic Curves and Cusps

For the case of microlensing, some global quanti-
tative results are known about the caustics:

Theorem 8. Consider a locally stable single-plane
lensing map due to the microlensing deflection po-
tential @ 4. Then:
(1) [74] The number of critical curves is at
most 2g.
(2) [66, 54] The number of cusps is even.
(3) [60] The number of cusps is bounded above
as follows:

2 .
VR R i,
(4) [52] The total signed curvature K¢ of the
fold caustics satisfies:
Ky = -21g.
In Theorem 8, the even number cusp and total

signed curvature results extend to generic k-plane
lensing (AP 1995 [52]), where for the latter we have

K = —2m|B|,

with |B| the number of obstruction points in the
lens system; also see [54, Sec. 15.4] for more.
Figure 5 captures the even-number-cusp result.

Open Problem 4. Determine the maximum num-
ber of cusps in microlensing.
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Figure 5. An illustration of the
even-number-cusp theorem and
local-convexity theorem. For the latter, fold
curves are convex (outward curving) locally on
the side from which a light source has more
images. Each numeral indicates the number of
lensed images of a light source in the given
region. These caustics are due to two point
mass lens with shear y > 0. Credits: [74].

We suspect that the techniques involved with
this problem are similar to the complex algebraic
methods employed by Khavinson and Neumann
[39] to address the maximum number of lensed
images.

Local Convexity of Caustics

The fold caustic curves due to single-plane lensing
by the microlensing deflection potential g, satisfy
local convexity, which means that the fold caustic
curve is convex (bends outward) when viewed from
the side where a light source has more images. This
phenomenon was discovered in 1976 by Berry [13]
while studying the caustics due to water droplets.
The notion was mathematically developed in [54,
Sec. 9.3] for the context of gravitational lensing.

Theorem 9. [54, p. 360] If n, is a locally stable
single-plane lensing map induced by a deflection
potential @ with a locally constant surface mass
density K, then the fold arc caustics of iy are locally
convex.

Theorem 9 applies to the microlensing deflec-
tion potential @, since k,(x) = k. for x € L.
Consequently, caustics due to stars cannot bend
arbitrarily. Figure 5 gives an example of local con-
vexity in microlensing. Local convexity, however,
can be violated for 2-plane lensing by locally con-
stant surface mass densities. For example, 2-plane
microlensing can produce teardrop caustics [59].

Caustic Metamorphoses

For the time-delay families considered so far, all
physical parameters of the lens system, such as
the masses of the lenses, distances between lens
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planes, redshifts, etc., are assumed fixed. Allow-
ing these parameters to vary will produce higher
order caustic singularities whose contours on the
light source plane produce fascinating caustic
metamorphoses that can be classified into char-
acteristic types. Note that generic optical caustic
metamorphoseshave distinct global properties en-
forced for general caustic metamorphoses—e.g.,
in three-space, saucer shape or pancake caustics
cannot occur in optical caustic metamorphoses
(Chekanov 1986 [22]).

Generically, there are five local 1-parameter
metamorphoses of caustics in the plane: Iips,
beak-to-beaks, swallowtails, elliptic umbilics, and
hyperbolic umbilics (Zakalyukin 1984 [75], Arnold
1986 [9], Arnold 1991 [10]). All five of these caustic
metamorphoses occur in gravitational lensing [66,
54].

Figure 6 depicts an example of four swallowtail
metamorphoses due to lensing by a point mass
lens with shear y = 0.2 and k. = 1.21. For the
general microlensing deflection potential ¢4, only
beak-to-beaks, swallowtails, and elliptic umbilics
can occur because lips and hyperbolic umbilics
violate the local convexity of Theorem 9.

The following results are known about upper
bounds on the number of caustic metamorphoses
in microlensing:

Theorem 10. Consider a single-plane lensing map
due to the microlensing deflection potential .
Then:

(1) [74] The number of beak-to-beak caustic
metamorphoses is at most 3g — 3.

(2) [54, p. 536] The number of elliptic umbilic
caustic metamorphoses is at most2g—2 for
y =0 and 2g fory > 0.

Theorem 10 immediately shows that a sin-
gle point mass lens with continuous matter and
shear cannot produce any beak-to-beak caustic
metamorphoses.

Open Problem 5. Determine the maximum num-
ber of swallowtail metamorphoses in microlens-
ing.

This problem relates to Open Problem 4 since
the maximum number of cusps would be an upper
bound for the number of swallowtails.

Elimination of Cusps

Caustic metamorphoses can also eliminate sin-
gularities on caustic curves, a result shown for
microlensing by AP and Witt in 1996:

Theorem 11. [60] Let n be the single-plane lens-
ing map induced by the microlensing deflection po-
tential @ 4. For a sufficiently large continuous dark
matter density k., all the cusp caustics are elimi-
nated, and the caustics evolve into a disjoint collec-
tion of g oval, fold caustic curves.
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Figure 6. An illustration of swallowtail
metamorphoses and the cusp-elimination
theorem (Theorem 11). The left panel shows a
caustic with four swallowtail caustic
metamorphoses, which yields a total of eight
cusps. All the cusps get eliminated by the
swallowtail caustic metamorphoses. A light
source inside the oval caustic in the right
panel will have no lensed images, whereas two
lensed images are produced for light source
positions outside the oval. Hence, the
local-convexity theorem is satisfied by the oval
caustic. The caustics are produced by a point
mass lens with shear y = 0.2 and k. that
increases from left to right through the
panels, starting at k. = 1.21 in the left panel.
Credits: [54, p. 385].

Theorem 11 shows that the lower bound on the
number of cusps in Theorem 8(3) is not trivial but
is the minimum number of cusps. Figure 6 gives
an example of cusp elimination leading to an oval
caustic. The bottom left panel of Figure 8 also
shows some oval caustics.

Open Problem 6. Determine whether cusp elimi-
nation holds for any locally stable k-plane lensing
map, where each stage of the evolution is a k-plane
lensing map.

The notion of cusp elimination for general
maps was anticipated by Levine [42] as early as
1963 and further explored by Eliashberg [27] in
1970, giving rise to the Levine-Eliashberg cusp-
elimination theorem: A locally stable map from
a compact, oriented n-manifold into the plane is
homotopic to a locally stable map with zero or one
cusp if the Euler characteristic of the manifold is
even or odd, respectively.

Remark. The Levine-Eliashberg cusp-elimination
theorem does not imply that cusp elimination

DECEMBER 2010

holds in gravitational lensing, since if one starts
with a lensing map whose domain is extended to
the celestial sphere, then the theorem does not
guarantee that each stage of the homotopy is a
lensing map. Nevertheless, it was this theorem
that inspired Theorem 11.

Arnold’s ADE-Family of Caustics

In addition to the light source position vy, a lens
system has other physical parameters p € R" 2,
which can represent masses, core radii, shears,
redshifts, angular diameter distances, etc. So far,
these parameters have been fixed, and only y was
varied.

When we allow the parameters p to vary as well,
we have an n-parameter family T,y of time-delay
functions that generate higher-order caustics in
R"2 x S = {p,y}. Slices through these higher-
dimensional caustics by the light source plane
S produce caustic curves in S with distinctive
features; see the sketches by Callahan [19].

The local classification of higher-order caustics
for general n-parameter families is well known
from singularity theory (e.g.,[8, 11, 12, 21, 54, 46]):

e n=2: folds A, and cusps Aj;.

e n=3: list for n = 2 along with
swallowtails Ay, elliptic umbilics Dy, and
hyperbolic umbilics D} .

e n=4: list for n = 3 along with
butterflies As and parabolic umbilics Ds.

e n=>5: list for n = 4 along with
wigwams Ag, second elliptic umbilics Dy,
second hyperbolic umbilics D¢, and sym-
bolic umbilics Es.

The A,D,E notation is due to Arnold, who
connected these caustic singularities with Coxeter-
Dynkin diagrams of simple Lie algebras with the
same designation. Arnold’s classification of typical
caustics for n < 5 is:

Theorem 12. [8] For n < 5, there is an open
dense set in the space of Lagrangian maps of
n-dimensional Lagrangian submanifolds such that
the caustics of each Lagrangian map in the set are
locally from the following list: Ap(1 <€ < n+1),
Di4 < ¥ <n+1), Eg5 < n), E(6 < n), and
E3(7 < n).

Figure 7 illustrates the swallowtail A4, elliptic
umbilic D;, and hyperbolic umbilic D} caustic
surfaces from Arnold’s ADE-list of caustics in
Theorem 12. Generic slices of these caustic sur-
faces by a plane produce the characteristic shapes
of the caustics curves. Note that the figure in-
cludes the swallowtail caustic metamorphoses in
Figure 6 and three of the five generic local caustic
metamorphoses mentioned earlier.

Though Theorem 12 applies to general La-
grangian maps, Guckenheimer [32] showed that it
also exhausts the list of typical caustics due to
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Figure 7. Swallowtail, elliptic umbilic, and
hyperbolic umbilic caustic surfaces. The slices
through the caustic surfaces produce planar
caustic curves with characteristic features that
occur in gravitational lensing. Credits: [9].

general optical systems. Since gravitational lens
systems form a proper subset of the set of optical
systems, we need to address whether Arnold’s
entire ADE-list of caustics occurs in gravitational
lensing.

Gravitational lens models are known to produce
at least the seven caustics for the n = 4 case in
Arnold’s Theorem 12 [54]. Shin and Evans 2007
[71] showed that our Milky Way galaxy acting as
a lens can produce butterfly caustics. Orban de
Xivry and Marshall 2009 [47] also developed an
atlas of lensing signatures, predicting that a galaxy
with a misaligned disc and nucleus would produce
swallowtails and butterflies, binary galaxies would
generate elliptic umbilics, and clusters of galaxies
would produce hyperbolic umbilics and more.

Gravitational lensing by the Abell 1703 cluster
of galaxies already reveals a hyperbolic umbilic
signature [47]. Current and planned wide-field
optical imaging surveys are expected to find thou-
sands of new lensing signatures, which will likely
contain evidence for many ADE-caustics [47].

Remark. Along with Theorem 12, the wider
Arnold singularity theory also applies to gravita-
tional lensing. AP 1993 [50] employed the theory
to obtain local classifications of the qualitative
features of certain key structures in lensing:
lensed image surfaces (multibranched graphs of
all lensed images with respect to light source
position), multibranched graphs of lensed image
time delays, Maxwell sets (light source positions
for which atleast two lensed images have identical
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time delays), bicaustics (paths traced out by cusps
during an evolution of caustics), etc.

Caustics and Cosmic Shadows

One of the striking consequences of gravitational
lensing is that the gravitational fields due to bodies
in the universe such as stars, galaxies, black holes,
dark matter, etc., cast shadow patterns throughout
the cosmos. Some examples are shown in Figure 8.

)

|

Figure 8. Examples of shadow patterns on the
light source plane generated by microlensing.
The fold caustic curves are brighter locally on
one side, and each cusp has an emanating
bright lobe. Elimination of cusps occurs for
the middle and bottom rows of panels
(clockwise through those panels), resulting in
oval caustics bounding demagnified regions.
The shadow pattern color scheme is: yellow
(brightest) — red — green — blue — black
(darkest). Credits: Wambsganss.

Within our framework, the shadow pattern lies
on the light source plane and is modeled by
assigning at each point y in the light source plane
S the total magnification M, (y) of a light source
at y. As y varies, a gradation in magnification is
mapped out on the light source plane with caustics
as the brightest part of the shadow pattern—
Figure 8.

Making use of Theorem 1 we can infer the
generic properties of the shadow pattern due
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Figure 9. Finding an extrasolar planet using gravitational lensing. Leftmost panel: A theoretical
shadow pattern due to a foreground star-planet lens. A background star moves from left to right
along the white linear path. Middle panel: As the background star cuts through the shadow
pattern due to lensing by the foreground star-planet lens (trajectory in the left panel), the
background star’s magnification varies according to the theoretical light curve shown. The spikes
are due to the presence of the planet, which creates the caustic curve shown in the leftmost panel.
In the absence of a planet, the light curve would have no spikes and be smooth. Rightmost panel:
The theoretical light curve in the middle fits observational data of a background star being lensed
by a star-planet lens located toward the center of our galaxy. The dots are observations made by
the MAO (blue) and OGLE (red) groups. Credits: Bond et al., MAO and OGLE collaborations [17].

to multiplane lensing. Two such properties are
(cf. Figure 8): (1) a fold caustic curve is brighter
locally on one side of the curve and (2) cusp
caustics, though they form a set of measure zero,
contribute nonzero area to a shadow pattern since
a high-magnification lobe emanates from each
cusp.

How to Detect an Extrasolar Planet?

The issue of extraterrestrial life has resurged in the
media recently with Stephen Hawking’s Discovery
Channel series. A natural step in the search for
life in other parts of our galaxy is to find planets
outside our solar system. Gravitational lensing
of light sources cutting across shadow patterns
provides a powerful tool.

The method is summarized in Figure 9. Suppose
that a star and planet lens a background star
moving across the line of sight. The star-planet
lens creates a shadow pattern on the light source
plane (leftmost panel, Figure 9). Note that during
the period of observation, the background star
typically travels a short distance compared to the
scale of the lens system and so its trajectory can
be modeled by a linear path.

As the background star cuts across the shadow
pattern (leftmost panel, Figure 9), the background
star’s total magnification will vary according to the
brightness gradation in the shadow pattern. The
plot of this magnification as a function of position
along the linear path is called a light curve.

The crossing of caustics by alensed light source
causes significant jumps in the magnification of
the source. In the middle panel of Figure 9, the pre-
dicted theoretical light curve shows characteristic
spikes as the light source crosses the two fold arcs
of the caustic. These significant spikes are due to
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the planet, though the planet is at least a million
times less massive than the star. The light curve
would be smooth in the absence of the planet [17].
Remarkably, such spikes in light curves have led
to the discovery of several extrasolar planets [28].

The alertreader may be disturbed by the shadow
pattern in the left panel of Figure 9 due to a star-
planet lens. The caustic appears to have five cusps,
contradicting the even-number cusp theorem. The
issue is resolved in Figure 10.

0.0005

o

0.0005

—0.52

Figure 10. The caustic in the left panel of
Figure 9 appears to have five cusps, violating
the even-number cusp theorem. There is
actually a hidden extra cusp (insert) on the arc
joining the two leftmost cusps. Credits: [54, p.
125].

Magnification Relations in Lensing

Qualitative and quantitative results play important
roles in gravitational lensing. The former focuses
on properties that arise from or are preserved by
nonlinear coordinate transformations in the lens
and light source planes—e.g., the generic, stable,
and topological results of Theorems 1, 4, and 8(4).
Quantitative properties are derived from or pre-
served by linear (ideally, orthogonal) coordinate
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transformations. Our treatment of magnification
relations in this section will be strictly quantita-
tive in the aforementioned sense, while the next
section will employ the qualitative local forms of
the families of functions in Arnold’s ADE-list.

Fold and Cusp Magnification Relations

For a locally stable single plane lensing map, the
multiple images of a light source near a fold or
cusp caustic have distinct configurations locally.
Specifically, if the source is near a fold caustic
curve, then the multiple images will include a
close doublet of images of opposite parity, which
then straddle both sides of a critical curve. The
image configuration in Figure 11 shows the close
doublet for a light source near a fold arc.

Fold

Cusp

CASTLES

Figure 11. Top two panels: Predicted multiple
image configurations (left) when a source is
near a fold caustic arc and cusp caustic point
(right). The critical curves are on the left, and
the caustics are on the right. A close image
doublet and triplet occur for the fold and cusp
cases, respectively. The lens model used
represents an isothermal ellipsoidal galaxy.
Bottom panels: Observed four-image
configurations (white discs) of the quasar
PG1115 with a fold doublet (bottom left panel)
and of the quasar RXJ1131 with a cusp triplet.
The observations are in the near-infrared
I-band. Credits: Keeton et al. [34] (top panels)
and the CASTLES [18] (bottom panels).
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When a light source is near a cusp caustic point
and interior to the arcs abutting the cusp, a close
triplet of images occurs locally among the lensed
images; see Figure 11. The local doublet and
triplet image configurations are also predicted
from the local form of a locally stable lensing
map about a fold caustic point and cusp caustic
point, respectively [54, Sec. 9.1]. Observational
confirmation of these predictions is given in the
bottom panels of Figure 11.

Blandford and Narayan 1986 [16] showed that
the close fold image doublet has a total signed
magnification that sums to zero:

(6) 1+ 2 =0,

where p; and p, are the signed magnifications
of the lensed images in the doublet. Since the
lensed images in the doublet have opposite parity,
if y; and u, have positive and negative parity,
respectively, the fold magnification relation can
be written as:

il _

|2 '
A result similar to (6) holds for the close cusp
image triplet (Schneider and Weiss 1992 [68] and
Zakharov 1995 [76]):

H1 + pp + 3z =0,
where py, uz, and ps are signed magnifications
of the lensed images in the triplet. These local

magnification relations hold independent of the
choice of lens model and have been observed.

Magnification Relations for D; Caustics

A natural question is whether higher-order caus-
tic magnification relations occur in gravitational
lensing. The next theorem due to Aazami and AP
2009 [1] establishes such relations for elliptic and
hyperbolic umbilic caustics in lensing.

Let np; and np; denote the respective quantita-
tive local forms of a single-plane lensing map about
elliptic umbilic and hyperbolic umbilic caustics;
see [66, pp. 200, 201] for their explicit expressions.

Theorem 13. [1] At any noncaustic point of np:
where a light source has four lensed images (the
maximum number), the total signed magnification
of the light source satisfies:

Hi+ Mz + M3 + Hg = 0.

Theorem 13 cannot be established using the
local qualitative forms for caustics in singularity
theory. Those forms arise from local diffeomor-
phisms that distort the lens and light source
planes and can transform a lensing map n into
a map having nothing to do with gravitational
lensing. Instead, the quantitative local forms np;
and np; of the lensing map in Theorem 13 arise
from linear coordinate transformations that pre-
serve the geometric magnification relations under
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study. The interested reader may also consult [54,
Sec. 9.2] for quantitative local forms of the lens-
ing map about fold and cusp caustics using only
orthogonal coordinate transformations.

Lefschetz Theory and Magnification Relations

We outline the idea behind an alternative proof
of Theorem 13 given by Werner 2009 [73] using
Lefschetz fixed point theory.

Complexify the polynomial map due to an
elliptic umbilic or hyperbolic umbilic singularity
to obtain holomorphic maps f : C> — C? such
that their fixed points are the four real lensed
images of a source at a maximal, noncaustic
point (noncaustic locations with the maximum
number of lensed images). In this domain, it
turns out that the fixed point indices become
the signed lensed image magnification, det[I —
D(f)1™' = u, where D(f) is the matrix of first
partial derivatives of f in holomorphic coordinates.
If f has no fixed points at infinity, then f can be
extended to a holomorphic map F : CP? — CP?
for which the holomorphic Lefschetz fixed point
formula applies, and we recover F|c2 = f with the
usual decomposition CP? = C? U CP'. Since the
holomorphic Lefschetz number for holomorphic
maps on complex projective space is unity, we
find:

1 1

Lua(F) = 2 G =BT

fix(F)

1 1
- ﬁxz(f) detll —D(f)] ﬁx(%w det(l - D(F)]

4
ZIJi +1,
i-1

where the second equality in the top line is the
holomorphic Lefschetz fixed point formula. The
result follows; for details see [73] and the review
article [57]. Note that the above argument cannot
be applied to all stable caustics since there are
caustics with fixed points at infinity (e.g., parabolic
umbilics).

Open Problem 7. Generalize the magnification re-
lations to Lorentzian manifolds.

Why Are Magnification Relations Important?

The left panel of Figure 12 shows an observed
example of multiple images satisfying the fold
magnification-relation theorem (6). However, the
right panel of Figure 12 has a close fold image dou-
blet that violates the fold magnification relation.
What does the violation of a caustic magnifica-
tion relation signify physically? In 1998 Mao and
Schneider [43] interpreted the violation of the cusp
magnification relation as the galaxy lens not being
smooth on the scale of the angular separation of
the images. In other words, there is substructure
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(not detected by our instruments) on the scale
of the image separations that affects the image
magnifications, thereby causing the violation.

Arigorous and systematic study of the violation
of the fold and cusp magnification relations using
data was conducted by Keeton, Gaudi, and AP in
2003 [34] and 2005 [35]. For the data sets used in
their studies, they showed that five of the twelve
fold doublets and three of the four cusp triplets
had to arise from galaxy lenses with substructure.

Today, two candidates have emerged for the
substructure in the galaxy lenses producing viola-
tions of the caustic magnification relations: dark
matter clumps (Metcalf and Madau 2001 [44] and
Chiba 2002 [23]) and microlensing by stars with
continuous dark matter and shear from infin-
ity (Schechter and Wambsganss 2002 [65]). Both
scenarios employ stochastic gravitational lensing
because the substructure is assumed to be ran-
domly distributed—for instance, the positions of
the dark matter clumps or the stars are random
vectors.

The planned deep sky surveys [47] for lensing
signatures discussed earlier are expected to find
examples of high-order caustic magnification rela-
tions as well as their violations, which would lead
to evidence of substructure in not only galaxies
but also clusters of galaxies.

0.73 arcsec

S

[

Figure 12. Left panel: Four lensed images
(white blobs) of the lensed quasar
HE0230-2130. The fold magnification-relation
theorem (i.e., |1 |/|u2| = 1) is obeyed by the
upper close image doublet because the lensed
images are a mere 0.73 arcseconds apart with
magnification ratio |y |/|u2| between 0.9841
and 1.0161. The yellow structure is the
location of the deflector galaxy. Right panel:
Four lensed images (white blobs) of the lensed
quasar SDSS0924+0219, where the yellowish
central blob identifies the galaxy lens. The
leftmost lensed image pair in the right panel is
as close as the doublet in the left panel since
the right panel pair has an angular separation
of 0.74 arcseconds. However, the right panel
pair violates the fold magnification-relation
theorem since |y |/|u2| = 10! Credits: Burles
(left panel) and Schechter (right panel).
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The ADE-Magnification Theorem

Aazami and AP 2009 [2] extended their magni-
fication relations in Theorem 13 beyond lensing.
They established the result below for the families
of functions, not necessarily time-delay families,
in Arnold’s ADE list, which includes caustics with
fixed points at infinity.

Let £ be an open subset of R? and S = R2.
Consider an n-parameter family F of functions
Fes : £ — R, where (c,s) € R"2 x S. For fixed
(c,s), define the signed magnification of a critical
point w; € £ of F.¢ by:

1
~ Gauss (w;, Fes(w;))’

mc,s (Wz)

where the denominator is the Gaussian curvature
at (wy, Fes(w;)) in the graph of Fs. Fix ¢y and call
s’ € S a noncaustic point if F., s is nondegenerate.
Consider the subset Sy < S of noncaustic points
s’ such that F.,¢ has finitely many critical points,
say, N(s’) such points. An element s, of S, is
called a maximal, noncaustic point if N(sy) =
maxses, N(s').

Theorem 14. [2] Let F.s : L — R be any n-
parameter function in the ADE-family of caustics.
Then maximal, noncaustic points exist for each
ADE-caustic and for every such point s, the total
signed magnification of the critical points w; of
Fs, satisfies:

N(sx)

Z mc,sx (Wl) = 0;

i=1
where N(sx) = n+ 1 withn > 1 for A, caustics,
N(syx) = n+1 withn = 3 for D, caustics, N(sy) =
6, 7,8 for Eg, E;, Eg caustics, respectively.

Observe that since magnification is a reciprocal
of Gaussian curvature, the magnification relations
in Theorem 14 are geometric invariants. Also, note
that the theorem singles out the highest-order
caustics of each n-parameter family.

The proof of Theorem 14 in [2] was algebraic,
employing the Euler trace formula [11]. Recently,
Aazami, AP, and Rabin 2010 [3] gave an alternative
proof using a geometric approach with residues
on compact orbifolds. Note that similar to the
Lefschetz fixed point approach, direct application
of the Euler-Jacobi theorem does not directly yield
all the ADE-magnification relations due to nonzero
“common roots” at infinity. We end the article with
a sketch of the proof in [3].

Orbifolds and ADE-Magnification Relations
We begin by reviewing the standard residue ap-
proach to magnification relations of Dalal and
Rabin 2001 [24], which was generalized by Aazami,
AP, and Rabin 2010 [3] to orbifolds. For brevity,
the proof in [3] will be illustrated using only
one singularity from the ADE-caustic family. We
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select the parabolic umbilic caustic Ds since it in-
duces a “lens equation with a root at infinity”. To
make these ideas precise, we use the fact that the
parabolic umbilic arises from the four-parameter
family

Fes(u,v) =u?v = v + 33 + v — 8,v — spu.

This singularity has a maximal, noncaustic point,
which we take to be s, and the maximum number
of preimages is five [3]. The parabolic umbilic
family F induces a map f. between planes via

fc(w) = vFr:,s(‘/v) + S,
where w = (u,v). Explicitly: VF.s(w) = 0:
(FPw,v), &, v))

= (2uv, u® £4v? +3c3v° + 2cuv) .

fo(u,v) =

Although the f.-preimages w = (u, v) have real co-
ordinates, we shall drop that restriction, allowing
for w € C2. Call the critical values of f. the caustic
points of f. since the locus of critical values of f,
coincides with the set of s € S such that F.s has
at least one degenerate critical point.

Now, for any noncaustic point s = (s, s») of f,
consider the following meromorphic two-form on
C?%

dudv
w = y
Py(u,v)Pr(u,v)

where P;(u,v) = fP(u,v) —s; and P;(u,v) =
& (u,v) — sp. We are interested only in the
poles of w that are the common roots of P,
and P, as they are f.-preimages of s. Call such
poles the f !(s)-poles. It can be shown that the
residue of w at w € f~1(s) is precisely the signed
magnification M s(w), provided s is not a critical
value of f..

Using homogeneous coordinates [U : V : W],
whereu = U/W, v = V/W, and (U, V,W) is nonzero,
extend P; and P,, and hence f., to complex
projective space CP*:

(7)
Pl (Ul V; W)hom
PZ (Ul V; W)hom

20V — s;W?
U?W = 4V3? + 3¢5 V2W
+2c, VW2 — S2W3.

Likewise, extend w to a 2-form on CP? that is
homogeneous of degree zero. Its f7!(s)-poles are
now the common roots of P; and P, in CP?. Note
that C? corresponds to W = 1 and infinity toW = 0.

The global residue theorem [31] states that the
sum of the residues of the f; ! (s)-poles of w on CcP?,
which consists of those in C? and at infinity, is iden-
tically zero. Since the set of poles of w in C? equals
f_1(s), the sum of their residues is the total signed
magnification, Wiorc(8) = Xjep1(s) Wes(W). Con-
sequently, the total signed magnification Mo (S)
is equal to minus the sum of the residues of w at
infinity.
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Recalling that s is a maximal, noncaustic point
of f., let us now examine the behavior of the
extended parabolic umbilic map f. at infinity in
CP?. Setting W = 0 in equation (7) yields

Pl (U’Vl O)hom = ZUVI PZ (U’V’ O)hom = i4V3

These equations have one nonzero common root,
which is the fZ!(s)-pole of w at infinity or the
f.-preimage of s at infinity, namely, the point
[1:0:0]in CP%. As shown in [3], the way around
this pole at infinity is to consider an extension to a
space other than CP?, namely, weighted projective
space WP(ay, a1, a»), where ay, a;,a, are positive
integers denoting particular “weights” of the space.
These are examples of compact orbifolds.

Orbifolds generalize manifolds. Whereas a man-
ifold locally looks like an open subset of R”, an
orbifold X locally looks like the quotient of an
open subset of R" by the action of a finite group
G. The analogues of coordinate charts are known
as orbifold charts. Like coordinate charts, two
overlapping orbifold charts are required to satisfy
a compatibility condition. For our purpose, it is
best to distinguish an orbifold X by its singular
points, which are points p € X whose stabilizer
group G, C G is nontrivial. If an orbifold has
no singular points, then it is a smooth manifold.
Consult [63, 45, 4] for more on orbifolds.

The most common examples of orbifolds are
those which arise as quotients of manifolds by
compact Lie groups, and weighted projective
space is no exception. For example, the orb-
ifold WP(3, 2, 1) is defined by the Lie group action
SIxS — §: (z,(U,V,W)) — (23U, 2%V, zW).
So WP(3,2,1) = S$°/S! under this action, where
S! ¢ Cand $° ¢ C3. Notice that if the action were
(z,(U,V,W)) — (zU, zV, zW), then the resulting
quotient space would be ordinary complex projec-
tive space CP?. In other words, WP(1,1, 1) = CP.
Similar to CP?, the space WP(3,2,1) has C? cor-
responding to W = 1 and infinity to W = 0, and
(U, V,W) = (0,0,0). There are no singular points
in the C? part of WP(3,2,1) since the stabilizer
condition for such points implies zW = W, which
forces z = 1 and, hence, the stabilizer group to be
trivial.

Covering WP(3, 2,1) with homogeneous coor-
dinates [U : V: W], we see that U and V now have
weights 3 and 2, respectively, and relate to the
coordinates (u,v) € C? in a new way:

U Vv
“we VT we
Extending the parabolic umbilic map f. to
WP(3,2,1) then yields extensions of P; and P,
to the following new homogeneous polynomials,
respectively:

20V — s;W°
U2 +4V3 + 3C3V2W2 + 2C2VW4 - Szwﬁ.

u
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The two-form w then extends to WP (3, 2,1).In C?,
which corresponds to W = 1, we recover the same
f. as in the CP? discussion. At infinity or W = 0,
however, the polynomials become:

2UV
U? +4V3,

The only common root is [0 : O : 0], which is not
a point in WP(3,2,1). In other words, there are
no preimages at infinity, hence no f;!(s)-poles of
w at infinity. All the f_1(s)-poles then lie in the
C? part of WP(3, 2, 1), where there are no singular
points. By the global residue theorem for compact
orbifolds, the total signed magnification of the
f.-preimages of the maximal, noncaustic point s
for the parabolic umbilic then satisfies:

mtot,c(s) = Zmi =0.
i=1

Employing the above procedure with appropri-
ate choices of weighted projective spaces yields
magnification relations for all the A, D, E singular-
ities; see [3] for details.

Further Reading

Reference [66] treats the astrophysical aspects
of lensing, [54] develops a mathematical theory
of lensing for the single and multiplane cases,
[57] reviews some mathematical lensing results
not covered in this article, and [48] carries out
generalizations of lensing to Lorentzian manifolds.
The forthcoming book [58] will focus on strong-
deflection lensing by black holes and include
lensing in Kerr and Fermat geometries.

Figure Credits

Figure 1, top row: Jerry Schoendorf, MAMS; bottom
row, CfA-Arizona Space Telescope LEns Survey
(CASTLES) website. Figures 2, 7, 9, 11 courtesy
of the author. Figures 3, 4, 6, 10 courtesy of
the author and with kind permission of Springer
Science and Business Media [see 54]. Figure 5, from
[74], H. J. Witt and A. O. Petters, authors. Figure 8,
Joachim Wambsganss. Figure 12, left panel: Scott
Burles; right panel, Paul Schecter.
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his story begins with a cryptic letter
written by a dying genius, the clues
of which inspired scores of mathemati-
cians to embark on an adventure which
resembles an Indiana Jones movie. It
is reminiscent of the quest for the Holy Grail, in
which skillful knights confront great obstacles. But
these knights are mathematicians, and the Grail is
replaced by a mathematical “Rosetta Stone” that
promises to reveal hidden truths in new worlds.

The Saga

Our drama begins on March 27, 1919, the date
of Srinivasa Ramanujan’s triumphant, but bit-
tersweet, Indian homecoming. Five years earlier,
accepting an invitation from the eminent British
mathematician G. H. Hardy, the amateur Ramanu-
jan had left for Cambridge University with the
dream of making a name for himself in the
world of mathematics. Now, stepping off the ship
Nagoya in Bombay (now Mumbai), the two-time
college dropout, who had intuited unimaginable
formulas, returned as a world-renowned number
theorist. He had achieved his goal. At the young
age of thirty-one, Ramanujan had already made
important contributions to a mindboggling array
of subjects:! the distribution of prime numbers,
hypergeometric series, elliptic functions, modular
forms, probabilistic number theory, the theory of
partitions, and g-series, among others. He had
published over thirty papers, including seven with
Hardy. In recognition of these accomplishments,
Ramanujan was named a Fellow of Trinity College,

Ken Ono is the Asa Griggs Candler Professor of Math-
ematics at Emory University, and he is the Solle P. and
Margaret Manasse Professor of Letters and Science and
the Hilldale Professor of Mathematics at the University
of Wisconsin at Madison. His email addresses are ono@
mathcs.emory.edu and ono@math.wisc.edu.

1See [4, 6, 7, 8, 25, 29, 35] for more on Ramanujan and
his achievements.

NOTICES OF THE AMS

The Last Words of a Genius

Ken Ono

and he was elected a Fellow of the Royal Society
(F.R.S.), an honor shared by Sir Isaac Newton.

Sadly, the occasion of Ramanujan’s homecoming
was not one of celebration. He was a very sick man;
he was much thinner than the rotund Ramanujan
his Indian friends remembered. One of the main
reasons for his declining health was malnutrition.
He had been adhering to a strict vegetarian diet
in a time and place with no adequate resources to
supportit. He also struggled with the severe change
in climate. Accustomed to the temperate weather
of south India, he did not have or did not wear
appropriate clothing to protect him from the cool
and damp Cambridge weather. These conditions
took their toll, and he became gravely ill. He was
diagnosed2 with tuberculosis, and he returned to
India seeking familiar surroundings, a forgiving
climate, and a return to good health. Tragically,
Ramanujan’s health declined over the course of
the following year, and he passed away on April
26, 1920, in Madras (now Chennai), with his wife
Janaki by his side.

Ramanujan’s Last Letter

Amazingly, in spite of his condition, Ramanujan
spent his last year working on mathematics in
isolation.

...through all the pain and fever,...Ramanujan,
lying in bed, his head propped up on pillows, kept
working. When he required it, Janaki would give
him his slate; later she’d gather up the accumu-
lated sheets of mathematics-covered paper ...and
place them in the big leather box which he brought
from England (see p. 329 of [29]).

Janaki would later remember these last days
(see p. 91 of [38]):

He was only skin and bones. He often complained
of severe pain. In spite of it he was always busy

’The diagnosis of tuberculosis is now believed to be incor-
rect. D. A. B. Young examined the evidence pertaining to
Ramanujan’s illness, and he concluded that Ramanujan
died of hepatic amoebiasis [42].
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doing his mathematics. ...Four days before he died
he was scribbling.

In a fateful last letter to Hardy, dated January
12, 1920, Ramanujan shared hints (see p. 220 of
[7]) of his last theory.

I am extremely sorry for not writing you...I dis-
covered very interesting functions recently which I
call "Mock” theta functions....they enter into math-
ematics as beautifully as the ordinary theta func-
tions. I am sending you with this letter some exam-
ples.

This mysterious letter set off a great adventure:
the quest to realize the meaning behind these last
words and to then unearth the implications of
this understanding. These words exposed, in an
unexplored territory of the world of mathematics,
a padlocked wooden gate, beyond which was the
promise of unknown mathematical treasures.

The Early Years

The letter, roughly four typewritten pages, consists
of formulas for seventeen strange power series and
a discussion of their asymptotics and behavior near
the boundary of the unit disk. There are no proofs
of any kind. Ramanujan also grouped these series
based on their “order”, a term he did not define.
As a typical example, he offered

9]

1.1) f(q) = > ap(mag"

n=0
) an
':go (I+@2(1+g%)2---(1+4g")?
=1+q----+17503¢g% +...,

which he called a third-order mock theta function.
He then miraculously claimed that

_ -1

DT mfE,
1

2N -7

Obviously Ramanujan knew much more than he
revealed.

G. N. Watson was the first mathematician to
take on the challenge. He worked for years, and on
November 14, 1935, at a meeting of the London
Mathematical Society, he celebrated his retirement
as president of the Society with his now famous
address [40]:

It is not unnatural that [one’s] mode of ap-
proach to the preparation of his valedictory
address should have taken the form of an in-
vestigation into the procedure of his similarly
situated predecessors....I was, however, deterred
from this course...[Ramanujan’s last] letter is the
subject which I have chosen...; I doubt whether
a more suitable title could be found for it than
the title used by John H. Watson, M.D., for what
he imagined to be his final memoir on Sherlock
Holmes.

(1.2) ar(n) ~
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Watson chose the title The Final Problem: An
Account of the Mock Theta Functions.

He proceeded to describe his findings, a
medley of identities and formulas. Using
“g-hypergeometric series”, he reformulated
Ramanujan’s examples. For f(g) he proved:

(_1)nq(3n2+n)/2

2
W3 1@ = g 2

nez

1+gn

He also proved identities relating the mock theta
functions to Mordell integrals, such as

¥ _3me¢ sinhmrx _ 1
(1.4 Jo € sinh3mx ~  e2m/3./3

672n(n+1)n

X .
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He concluded by entrusting the quest to the next
generation of mathematicians.

Ramanujan’s discovery of the mock theta func-
tions makes it obvious that his skill and ingenuity
did not desert him at the oncoming of his untimely
end. ...To his students such discoveries will be a
source of delight and wonder until the time shall
come when we too shall make our journey to that
Garden of Proserpine [Persephone] ...

Mathematicians continued the pursuit. In the
late 1930s A. Selberg, as a high school student,
published his first two mathematical papers on
the subject. In the 1950s and 1960s, G. E. Andrews
and L. Dragonette, employing Watson’s results, fi-
nally confirmed Ramanujan’s claimed asymptotic
(1.2).3 Many mathematicians, among them B. C.
Berndt, Y.-S. Choi, B. Gordon, and R. McIntosh, pro-
gressed further along the lines set by Watson. After
many technical calculations that run on for pages,
these mathematicians mastered the asymptotics
of Ramanujan’s examples, amassed identities such
as (1.3), and obtained analytic transformations
relating these examples to integrals such as (1.4).

Mathematicians now had a grasp of the padlock
which secured the wooden gate. But they still did
not know the meaning behind Ramanujan’s last
words. Mathematicians had gathered a box full of
formulas, but there would be little progress for the
next ten years.

The “Lost Notebook"

In the spring of 1976, while searching through
archived papers from Watson’s estate in the Trinity
College Library at Cambridge University, Andrews
discovered the “Lost Notebook” [2]. The notebook,
consisting of over 100 pages of Ramanujan’s last
works, was archived in a box among assorted
papers collected from Watson’s estate.

...the notebook and other material was discov-
ered among Watson’s papers by Dr. J. M. Whittaker,

3k. Bringmann and the author have obtained an exact
formula for ag(n) [12].
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The five pages of Ramanujan’s last letter to Hardy... (above and following pages)

who wrote the obituary of Professor Watson for the
Royal Society. He passed the papers to Profes-
sor R. A. Rankin of Glasgow University, who, in
December 1968, offered them to Trinity College
so that they might join the other Ramanujan
manuscripts...[2].

Janaki presumably sent Hardy the large leather
box, the one filled with Ramanujan’s last papers.
Hardy passed it on to Watson in turn.

Although never truly lost, the sheaf of papers
had survived the long journey from India only to
then lie forgottenin the Trinity College Library. The
journey was indeed extraordinary, for the manu-
script almost met a catastrophic end. Whittaker,
the son of Watson’s famous coauthor E. T. Whit-
taker, recalled, in a letter to G. E. Andrews dated
August 15, 1979, the scene of Watson’s study at
the time of his death in 1965 (see p. 304 of [7]):

...papers covered the floor of a fair sized room
to the depth of about a foot, all jumbled together,
and were to be incinerated in a few days. One could

NOTICES OF THE AMS

only make lucky dips [into the rubble] and, as Wat-
son never threw away anything, the result might
be a sheet of mathematics, but more probably a re-
ceipted bill or a draft of his income tax return for
1923. By an extraordinary stroke of luck one of my
dips brought up the Ramanujan material.

The Lost Notebook allowed mathematicians to
escape the seemingly eternal morass. In addition
to listing some new mock theta functions, the
scrawl contained many valuable clues: striking
identities and relations, recorded without proofs
of any kind. Thanks to these clues, mathemati-
cians found many applications for the mock theta
functions: L-functions in number theory, hyperge-
ometric functions, partitions, Lie theory, modular
forms, physics, and polymer chemistry, to name a
few.

The Lost Notebook notably surrendered new
sorts of identities that, as we shall see, go on to
play a crucial role in the quest. Andrews proved
identities [3] relating mock theta functions to
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indefinite binary quadratic forms. For example, he
proved:

(1.5)

9]

S e e e

fO(Q) = = (1 +q) (]_—‘,—qn) anl(l_qn)

(—1)Jgimean-i’,

n%’zo n§<0

n-j=0 n-j<0.
D. Hickerson confirmed [26] identities in which
sums of mock theta functions are infinite products.
For example, for fy(g) and the mock theta function
®(q), he showed that

]

fo(q) +2®(q°) l_[

" -
an 4 (1

1On75)

qSI’l—l) )

As indefinite binary quadratic forms and infinite
products appear in modular form theory, these
identities finally provided evidence linking mock
theta functions to modular forms, the “ordinary
theta functions” of Ramanujan’s last letter.

DECEMBER 2010

A modular form is a holomorphic function
on the upper half complex plane H which is

oyt s ._ at+b
tamed by Mobius transformations yT := (; for

y = (‘C‘Z) € SL»(Z). Loosely speaking,* a weight
k modular form on a subgroup T C SL(Z) is a
holomorphic function f : H — C that satisfies

(1.6) fyt) = (cT + d)Xf(T)

for all y € I and is meromorphic “at the cusps”.
Despite this evidence, the essence of Ramanu-
jan’s theory continued to elude mathematicians.
The problem was that the Lost Notebook is merely
a bundle of pages that “...contains over six hun-
dred mathematical formulae listed one after the
other without proof®...there are only a few words
scattered here and there...” (p. 89 and p. 96 of [2]).
Instead of furnishing the missing key, the Notebook

4If k is not an integer, then (1.6) must be suitably
modified.

> Almost all of the results on g-series in the Lost Notebook
have now been proved [4].

NOTICES OF THE AMS
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provided a hammer in the form of countless identi-
ties. So armed, mathematicians burst through the
wooden gate, only to find a long dusty hallway
lined with locked iron doors. When the dust set-
tled, they could read the signs on the doors, and
with this knowledge they finally understood the
widespread scope of the mock theta functions. At
the Ramanujan Centenary Conference in 1987, F
Dyson eloquently summed up the dilemma [21]:
The mock theta-functions give us tantalizing
hints of a grand synthesis still to be discovered.
Somehow it should be possible to build them into
a coherent group-theoretical structure, analogous
to the structure of modular forms which Hecke
built around the old theta-functions of Jacobi. This
remains a challenge for the future. My dream
is that I will live to see the day when our young
physicists, struggling to bring the predictions of
superstring theory into correspondence with the
facts of nature, will be led to enlarge their analytic
machinery to include mock theta-functions...
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Zwegers’s Thesis

By the late 1990s little progress had been made.
Then in 2002, in a brilliant Ph.D. thesis [45] written
under D. Zagier, S. Zwegers made sense of the mock
theta functions. By understanding the meaning
behind identities such as (1.3-1.5) and by notably
making use of earlier work of Lerch and Mordell,
he found the answer: real analytic modular forms.
In the solution, one must first “complete” the
mock theta functions by adding a nonholomorphic
function, a so-called “period integral”.

For the mock theta functions f (g) (see (1.1)) and

(1.7)

w(q) =) aepn)q"

q2n(n+1)
(-2 -a%)?2- -

Zwegers [44] deﬂned the vector-valued mock theta
function (here g := e2™T)

F(T) = (Fo(T), Fi(T), F2(T)T

Mg ':',Mg

(1 — g2n+1)2’

= (@ #f(q), 2q°w(q?), 2q7 w(—q?))".

Then using theta functions go(z), g1 (z), and g» (z),
where

QO(Z) = n;m(_l)n (I’l + %) e3ni(n+%)zz

(g1(z) and g» (z) are similar), he defined the vector-
valued nonholomorphic function

(1.8)

G(T) = (Go(T) G1(T) Go ()T
(Ql(Z) go(z), —g2(z))T
_Zl\f =T + 2)

He completed F('r) to obtain H(T) := F(T) — G(T),
and he proved that [44]

dz.

2400
H(tT+1)=| o 0t |H(T)
0 C 0

and
H(-1/7) = V=it (10 8 ) H(D),

where G, := e?™/" AsSLy(Z) = ((§1),(9')), this
gives a vector version of (1.6), and SO the vector-
valued mock theta function F (T) is the holomorphic
part of the vector-valued real analytic modular
form H(T).

Generalizing identities such as (1.3), in which
mock theta functions are related to “Appell-Lerch”
series, Zwegers also produced infinite families of
mock theta functions that eclipse Ramanujan’s list.
For t € Hand u,v € C\ (Zt + Z), he defined the
function

7172

(v;T) Z

nez

_ n nn+l)/2
(1.9) (-w)"q

u(u,v;7) =

1—2zg"
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where z := e?™U w = 2™V g := ¢?™T and
S(v;T) == X,ez.1 €™YWYq¥/2. Using a function
R(u — v;T) which resembles the components of
(1.8), he then defined

(1.10) au,v;t) = pu,v; 1)

+ %R(u -V, T).

He proved that fi(u,v;T) is a nonholomorphic
Jacobi form, a function whose specializations at
“torsion points” give weight 1/2 real analytic mod-
ular forms. This function satisfies transformations
that imply (1.6) for these specializations; for exam-
ple, if y = (g fj) € SLy(Z), then there is an explicit
root of unity x(y) for which
~ u v at+b
u(c1‘+d’CT+d’CT+d>

= X et + d)ze MW VEeT A L f(y viT),

Exploring New Worlds

Armed with Zwegers’s landmark thesis, mathe-
maticians have begun to explore [36, 43] the worlds
behind the iron doors. Here we sample some of
the discoveries that this author has obtained with
his collaborators.

Harmonic Maass Forms

The mock theta functions turn out to be holomor-
phic parts of distinguished real analytic modular
forms, the harmonic Maass forms, which were re-
cently introduced by J. H. Bruinier and J. Funke
[16].

Loosely speaking, a weight k harmonic Maass
form is a smooth function M : H — C satisfying
(1.6)and Ax (M) = 0,which alsohas (at most)® linear
exponential growth at cusps. Here the hyperbolic
Laplacian Ay, where T = x +iy € H with x,y € R,
is given by

02 02 . o .0
Ag = —y* (ﬁ + 6_)/2) + iky (5 +1$> .
The Fourier expansions of these forms have been
the object of our explorations. In terms of the in-
complete gamma function T (e x) := [, e t* ! dt,
every weight 2 — k harmonic Maass form M(T),
where k > 1, has an expansion of the form

(2.11) M(T)= > cfi(ng"

n>=>—oo
+ Z cy(mT(k —1,41|nly)q".
n<0

Obviously, M (1) naturally decomposes into two
pieces, a holomorphic part

M (T):= > cf(ngq"

n>=>—oo

and its complement M~ (1), the nonholomorphic
part. The mock theta functions and Zwegers'’s
u-function give holomorphic parts of weight 1/2
harmonic Maass forms.

Harmonic Maass forms are generalizations of
modular forms; a modular form is a harmonic
Maass form M (1) where M~ (1) = 0. Because mod-
ular forms appear prominently in mathematics,
one then expects the mock theta functions and
harmonic Maass forms to have far-reaching impli-
cations. Our first forays in the long dusty hallway
have been profitable, and we have obtained results
[12, 13, 14, 15, 17, 32, 36, 37] on a wide array of
subjects: partitions and g-series, Moonshine, Don-
aldson invariants, Borcherds products, and elliptic
curves, among others. We now describe some of
these results.

Partitions

A partition of a nonnegative integer n is any
nonincreasing sequence of positive integers that
sum to n. If p(n) denotes the number of partitions
of n, then Ramanujan famously proved that

p(5n+4) =0 (mod 5),
p(7n+5)=0 (mod 7),
p(lln+6) =0 (mod 11).

In an effort to provide a combinatorial expla-
nation of these congruences, Dyson defined the
rank of a partition to be its largest part minus the
number of its parts. For example, the table below
includes the ranks of the partitions of 4.

Partition Rank Rank mod 5
4 4-1=3 3
3+1 3-2=1 1
2+2 2-2=0 0

2+1+1 2-3=-1 4

1+1+1+1 1-4=-3 2

Based on numerics, Dyson [20] made the following
conjecture whose truth provides a combinatorial
explanation of Ramanujan’s congruences modulo
5and 7.

Conjecture (Dyson). The partitions of 5n+4 (resp.
7n + 5) form 5 (resp. 7) groups of equal size when
sorted by their ranks modulo 5 (resp. 7).

In 1954 A. O. L. Atkin and H. P. F. Swinnerton-Dyer
proved [5] Dyson’s Conjecture.7

There is now a robust theory of partition con-
gruences modulo every integer M coprime to 6
[1, 34], and typical congruences look more like

p(48037937n +1122838) =0 (mod 17).

One naturally asks: what role, if any, do Dyson’s
original guesses play within this theory?

5m this paper we use a slightly stronger condition; we
assume the existence of “principal parts” at cusps.

DECEMBER 2010

” A short calculation reveals that the obvious generaliza-
tion of the conjecture cannot hold for 11.
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K. Bringmann and the author [13] investigated
this question, and in their work they related
N(r,t;n), the number of partitions of n with
rank congruent to r (mod t), to harmonic Maass
forms. They essentially proved that

> (N(r,t;n)— pm))a"

n=0 t
is the holomorphic part of a weight 1/2 harmonic
Maass form. This result, combined with Shimura’s
theory of half-integral weight modular forms and
the Deligne-Serre theory of Galois representations,
implies that ranks “explain” infinite classes of
congruences.

Theorem 2.1 (Th. 1.5 of [13]). If Q = 5 is prime

and j > 1, then there are positive integers t and

arithmetic progressions An + B such that
N(r,t; An+B) =0 (mod Q)

for every 0 < r < t. In particular, we have that
p(An+ B) =0 (mod QY).

Moonshine

In the late 1970s J. McKay and J. Thompson [39]
observed that the first few coefficients of the
classical elliptic modular function

j(z) — 744
=g ' +196884q + 214937604°
+ 86429997093 + - - -

are certain linear combinations of the dimen-
sions of the irreducible representations of the
Monster group. For example, the degrees of the
four “smallest” irreducible representations are: 1,
196883, 21296876, and 842609326, and the first
few coefficients are:

1=1
196884 = 196883 + 1
21493760 = 21296876 + 196883 + 1
864299970 = 842609326 + 21296876 + 2 - 196883 + 2 - 1.

J. Conway and S. Norton [18] expanded on these
observations, and they formulated a series of deep
conjectures, the so-called Monstrous Moonshine
Conjectures. These conjectures have now been set-
tled, and thanks to the work of many authors,
most notably R. E. Borcherds [9], there is a beauti-
ful theory, involving string theory, vertex operator
algebras, and generalized Kac-Moody superalge-
bras, in which connections between objects like
the j-function and the Monster are revealed.

In the 1980s, in the spirit of Moonshine, V. G.
Kac and D. H. Peterson [27] established the modu-
larity of similar characters that arise in the study
of infinite-dimensional affine Lie algebras. As a
generalization of this work, ten years ago Kac
and M. Wakimoto [28] computed characters of the
affine Lie superalgebras g¥(m,1)" and s€(m, 1)".
These characters are not modular, and Kac asked

NOTICES OF THE AMS

whether they might
be related to
harmonic Maass
forms. Bringmann
and the author
have  confirmed
[14] this spec-
ulation; these
characters are
pieces of nonholo-
morphic modular
functions. We con-
sider the character
for the sf(m,1)"
modules L(A)),
where L(Aq)) 1is
the irreducible
sf(m,1)» mod-
ule with highest
weight  Ay. If
m=2 and s € Z,
then the work of
Kac and Wakimoto implies that

(2.12)

Ramanujan passport photo.

_n(27)?
n(-l-)m+2

2.

k=(ky1,k2,.c,km-1)€ZM-1

where |k| := 3™ 'k and n(T) = gV 10, (1 —
g") is Dedekind’s eta function. Using the function
R in (1.10), Bringmann and the author defined the
function

(2.13)

m-2-12s

trL(A(s))qLU = 26’
qr S kiki+1)

1+ qlkl—s

Tons (T) 1= trpag) g™
nz n(27)%"

—2mlgTE n(T)2m+1R(_ST; (m-1)7),
and they showed that
n(T)2m+1
W ’ trL(/\m)qLo

is (up to a power of g) a mock theta function. As a
consequence, they proved:

Theorem 2.2 (Th. 1.1 of [14]). If m =2 and s € Z,
then T, s(T) is (up to a power of q) a nonholomor-
phic modular function.

Donaldson Invariants

In recent work with A. Malmendier [32], it is shown
that the mock theta function

M(q) := q'é‘

o (=g (- g1 —gd) - (=g

* AT+ + a2 (1+q1)?

n=0

is a “topological invariant” for CP2. This claim per-
tains to the differentiable topology of 4-manifolds.
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In the early 1980s S. Donaldson proved (for ex-
ample, see [19]) that the diffeomorphism class
of a compact, simply connected, differentiable
4-manifold X is not necessarily determined by
its intersection form. In his work, he famously
defined the Donaldson invariants, diffeomorphism
invariants of X obtained as graded homogeneous
polynomials on the homology ring with integer
coefficients.

There are two families of invariants correspond-
ing to the SU(2) and the SO(3) gauge theories.
The author and Malmendier considered the SO (3)
case for the simplest manifold, the complex pro-
jective plane CP? with the Fubini-Study metric.
The invariants are difficult to work out even in
this case; indeed, they were not computed until
the work of L. Gottsche [22] in 1996, assuming the
Kotschick-Morgan Conjecture. Gottsche, H. Naka-
jima, and K. Yoshioka have recently confirmed
[23] this provisional description of the Donaldson
“zeta-function”

pmsn
(2.15) Z(p,S) =%¢mn ST

In the mid-1990s G. Moore and E. Witten con-
jectured [33] “u-plane integral” formulas for this
zeta function. Their work relies on the following
identifications:

u-plane integrals — Donaldson invariants for CP2

!
elliptic surface

Here the rational elliptic surface is the universal
curve for the modular group I(4), which can be
identified with CP' minus 3 points with singular
fibers. In addition, the rational elliptic surface is
endowed with an analytical marking such that the
generic fibers correspond to elliptic curves that are
parameterized by C-lattices (w, Tw) in the usual
way. Then the u-plane zeta function is given as a
“regularized” integral

(2.16)
8 "9 du A du
V2t Jup ImT

PN
eZup+5 T . U(T)g.

Zyp(p,S) =

Here A is the discriminant of the correspond-
ing elliptic curves, and T is defined by the
renormalization flow on the elliptic surface.

The Moore-Witten Conjecture in this case is that
Z(p,S) = Zyp(p,S). Using (2.16), the author and
Malmendier reformulated this conjecture in terms
of harmonic Maass forms arising from M(q), and
they then used Zwegers’s u-function to prove the
following theorem.

Theorem 2.3 (Th. 1.1 of [32]). The Moore-Witten
Conjecture for the SO(3)-gauge theory on CP?
is true. In particular, we have that Z(p,S) =
Zyp(p,S).

DECEMBER 2010

Borcherds Products

Recently R. E. Borcherds provided [10, 11] a strik-
ing description for the exponents in the infinite
product expansion of many modular forms with
a Heegner divisor. He proved that the exponents
in these expansions are coefficients of weight
1/2 modular forms. As an example, the classical
Eisenstein series E4(T) factorizes as

E4(T) =1+240 > Y d*q"
n=1ld|n

— (1 _ q)7240(1 _ q2)26760 . — ﬁ (1 _ qn)c(n),
n=1

where the c(n) are the coefficients b(n?) of a
weight 1/2 meromorphic modular form

G(t) = > b(n)q"

n=-3
q 3 +4-240q
+26760g* + - - - —4096240g° + - - - .

Bruinier and the author [17] have generalized
this phenomenon to allow for exponents that
are coefficients of weight 1/2 harmonic Maass
forms. For brevity, we give examples of generalized
Borcherds products that arise from the mock theta
functions f(gq) and w(q). To this end, let 1 < D =
23 (mod 24) be square-free, and for 0 < j < 11 let

(2.17)
Hj(T)
= > C;nq"
n>=>—oo
0 if j=0,3,6,9,
. (%)q—lf(q24) if j=1,5,7,11,
T1()26® (@) - wi-g'?) ifj=2,10,
(—1)32g8 (w(g'?) + w(-q'2)) if j = 4,8,

If e(x) := e2™& and % is the Jacobi-Kronecker
quadratic residue symbol, then define

218) Ppr(X):= ]
b mod D

2]
b

(1-e(-b/D)X)).

Using this rational function, we then define the
generalized Borcherds product Yp (T) by
(2.19) ¥p (1) := [] Po(gm)Cmom,

m=1
The exponents come from (2.17), and m is the
residue class of m modulo 12.

Theorem 2.4 (§8.2 of [17]). The function ¥y (T) isa
weight 0 meromorphic modular form onT,(6) with
a discriminant —D Heegner divisor (see §5 of [17]
for the explicit divisor).

This theorem has an interesting consequence
for the parity of the partition function. Very little
is known about this parity; indeed, it was not even
known that p(n) takes infinitely many even and
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odd values until 1959 [30]. Using Theorem 2.4 and
the fact that

q"
(I+q@)2(1+g%)%---(1+q")?

Me

f(q) =

n=0
= > p(n)g" (mod 4),
n=0

the author proved the following result for the
partition numbers evaluated at the values of certain
quadratic polynomials.

Theorem 2.5 (Corollary 1.4 of [37]). If ¥ = 23

(mod 24) is prime, then there are infinitely many
2

m coprime to 6 for which p (g"; 4“) is even. More-

over, the first such m is bounded by 12h(—¥{) + 2,

where h(—{) is the class number of Q(v/—¥).

Elliptic Curve L-Functions
If E/Q is an elliptic curve

E/Q: y?>=x3+ Ax + B,

then E(Q), its Q-rational points, forms a
finitely generated abelian group. The Birch
and Swinnerton-Dyer Conjecture, one of the Clay
millennium prize problems, predicts that

ords—; (L(E,s)) = Rank of E(Q),

where L(E,s) is the Hasse-Weil L-function
for E. There is no known procedure for
computing ords_;(L(E,s)). Determining when
ords—; (L(E,s)) < 1 for elliptic curves in a family
of quadratic twists already requires the deep the-
orems of Kohnen [31] and Waldspurger [41], and
of Gross and Zagier [24]. These results, however,
involve very disparate criteria for deducing the
analytic behavior at s = 1.

Using generalized Borcherds products [17], Bru-
inier and the author have produced a single device
that encompasses these criteria. We present a spe-
cial case of these results. Suppose that E has prime
conductor, and suppose further that the sign of
the functional equation of L(E,s) is —1. If A is
a fundamental discriminant of a quadratic field,
then let E(A) be the quadratic twist elliptic curve

E(A): Ay?> =x®+ Ax + B.

Using harmonic Maass forms and their generalized
Borcherds products, the author and Bruinier show
that the coefficients of certain harmonic Maass
forms encode the vanishing of central derivatives
(resp. values) of the L-functions for the elliptic
curves E(A).

Theorem 2.6 (Th. 1.1 of [17]). Assuming the hy-
potheses above, there is a weight 1/2 harmonic
Maass form

Mp(T)= > ci(n)g"+ > ¢y (mT(1/2;41|nly)q",

n>—oco n<0

and a nonzero constant x(E) that satisfies:
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(1) If A < 0 is a fundamental discriminant for
which (%) =1, then

L(E(A),1) = &(E) - /Al - ey (A)2.

(2) If A > 0 is a fundamental discriminant for
which (%) = 1, then L' (E(A),1) = 0 if and
only if cf; (A) is algebraic.

The Path Ahead
As we have seen, Ramanujan’s deathbed letter
set into motion an implausible adventure, one
whose first act is now over. It was about the
theory of harmonic Maass forms and its implica-
tions for many subjects: partitions and g-series,
Moonshine, Donaldson invariants, mathematical
physics, Borcherds products, and L-functions of
elliptic curves, to name a few. This theory has
provided satisfying answers to the first challenges:
to understand the meaning behind Ramanujan’s
last words and to realize the expectation that this
understanding would reveal and open new doors
in the interconnected world of mathematics.
Every step along the way has evoked wonder—
the enigmatic letter, the Lost Notebook, and the
work of many minds. If the past is the road map
to the future, then the yet unwritten acts promise
forays, by intrepid mathematicians of today and
tomorrow, into new worlds presently populated
with seemingly unattainable mathematical truths.
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Topical Bias in Generalist
Mathematics Journals

Joseph F. Grcar

eneralist mathematics journals exhibit

bias toward the branches of mathemat-

ics by publishing articles about some

subjects in quantities far dispropor-

tionate to the production of papers in
those areas within all of mathematics. Bias is used
here because it is the shortest English word with
Webster’s meaning of “a tendency of a statistical
estimate to deviate in one direction from a true
value.” This paper quantifies the bias, which seems
not to be discussed previously, and suggests some
consequences of it.

The mathematical topics that are generally
agreed to be the major branches of mathematics
and the production of papers about them can be
determined from the Mathematics Subject Clas-
sification and from two databases based on the
classification [3]. The classification dates in some
form to 1931, when Zentralblatt fiir Mathematik
und ihre Grenzgebiete began publishing annual re-
views of papers grouped into broad subject areas;
Mathematical Reviews started publishing similar
material in 1940. The American Mathematical So-
ciety created hierarchical codes to classify papers
for its defunct Mathematical Offprint Service in
the late 1960s [8]. This AMS (MOS) Classification
quickly became the de facto index for mathemati-
cal literature. Both Zentralblatt and Mathematical
Reviews maintain historical databases of indexed
papers that can be accessed now through the
World Wide Web.

The data presented here for the decade 2000-
2009 were gathered from the Zentralblatt database
in January 2010. The 854,547 items that were
available at the time will increase as Zentral-
blatt completely assimilates papers from the

Joseph Grcar’s email address is jfgrcar@comcast.net.
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recent past. All the records can be retrieved by
Mathematics Subject Classification.

Figure 1 displays the percentage of all math-
ematics papers that address each of the major
branches of mathematics enumerated by Subject
Classification. The present 5-digit codes begin with
the 2-digit numbers that reflect the coarsest level
of differentiation, namely, the major branches of
mathematics. Currently, sixty-three of the 2-digit
numbers are assigned. Each paper so catalogued
receives one primary code and optionally any num-
ber of secondary codes. For example, when the data
were gathered, 22,443 papers from 2000-2009 in
the Zentralblatt database had either a primary or
a secondary code in the “group theory” classifi-
cation, 20. Thus approximately 22443/854547, or
2.63 percent, of all mathematics papers discussed
group theory during 2000-2009. This value is
recorded in Figure 1.

The gray shading in Figure 1 indicates papers
for which the associated classification is not the
primary subject. Such papers are prevalent across
mathematics, so they are included in the count
of papers for each subject. Because a paper may
contribute to several subjects, the percentages
for all classes sum to 156.5. The red, white, and
blue shades in the figure distinguish subjects in a
manner to be explained.

The American Mathematical Society publishes
three print journals “devoted to research arti-
cles in all areas of mathematics”. The extent to
which these journals fulfill the Society’s promise
of inclusiveness can be examined by calculat-
ing percentages similar to those in Figure 1 but
specific to the journals in question. The data pre-
sented here are for Proceedings of the American
Mathematical Society; similar observations can be
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made for the Journal and the Transactions. The
Zentralblatt database holds 4,758 papers from the
Proceedings during the past decade, of which 309
had a primary or secondary code beginning with
20. Therefore, of all papers in the Proceedings,
roughly 309/4758, or 6.49 percent, discuss group
theory. This percentage for the generalist jour-
nal, 6.49, contrasts with the 2.63 percent among
all mathematics papers. The fraction of papers
about group theory in the journal is over twice the
fraction in mathematics as a whole.

Percentage of All Mathematics Papers 2000—2009
0 1 2 3 4 5 6 7

Computer science 68
Partial differential eq. 35
Numerical analysis 65
Operations research 90
Fluid mechanics 76
Statistics 62

Quantum theory 81
Ordinary differential eq. 34
Mech. of deform. solids 74
Probability theory 60

Game theory, economics 91
Combinatorics 05

Systems theory, control 93
Dynamical systems 37
Operator theory 47

Biology 92

Number theory 11
Information and comm. 94
Functional analysis 46
Statistical mechanics 82
Differential geometry 53
Logic and foundations 03
Group theory 20

Relativity theory 83
Algebraic geometry 14
Calculus of variations 49
One complex variable 30
General topology 54

Global analysis 58

Mech. of particles and sys. 70
Associative rings 16

Linear, multilinear algebra 15
Fourier analysis 42

Real functions 26

Classical thermodynamics 80
Manifolds, cell complexes 57
Optics 78

Several complex variables 32
Approximations 41
Nonassociative rings 17
Functional equations 39
Special functions 33
Commutative rings 13
Measure and integration 28
Convex & discrete geom. 52
Topological groups 22
Ordered alg. structures 06
Integral equations 45
Geophysics 86

Geometry 51

Algebraic topology 55
Category theory 18
Astronomy 85

Field theory, polynomials 12
Potential theory 31

Abstract harmonic anal. 43
Integral transforms 44
General alg. systems 08
K-theory 19

Sequences and series 40

g'g 0] SpuaIxe

G'pL PUB 6'LL O} PUBIX®

E Primary Subject

[ Secondary Only

Figure 1. The distribution of effort in
mathematical research is indicated by the
percentage of all mathematics papers
addressing a particular Mathematics Subject
Classification. Three subject classes are
omitted: general 00, history 01, and education
97. Papers for which a subject is primary are
indicated by red, white, or blue shading (the
shading is explained elsewhere). Papers for
which a subject is only secondary are
indicated by grey shading.
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Positive Bias of Proc. AMS
by Primary or Secondary Subject for 2000—2009

log, =0 1 2 3

Commutative rings 13
Abstract harmonic anal. 43
Functional analysis 46
Algebraic topology 55
Manifolds, cell complexes 57
Fourier analysis 42
Operator theory 47
Potential theory 31

Several complex variables 32
Measure and integration 28
General topology 54

One complex variable 30
Field theory, polynomials 12
Topological groups 22
Algebraic geometry 14
Associative rings 16

Group theory 20

Number theory 11

K-theory 19

Special functions 33

Global analysis 58

Convex & discrete geom. 52
Differential geometry 53
Real functions 26

Integral transforms 44
Sequences and series 40
Logic and foundations 03
Category theory 18
Nonassociative rings 17
Approximations 41

Ordered alg. structures 06
Dynamical systems 37
Functional equations 39
Linear, multilinear algebra 15

35 Partial differential eq.

51 Geometry

34 Ordinary differential eq.
60 Probability theory

49 Calculus of variations

05 Combinatorics

45 Integral equations

08 General alg. systems

81 Quantum theory

94 Information and comm.
70 Mech. of particles and sys.
76 Fluid mechanics

78 Optics

86 Geophysics

65 Numerical analysis

92 Biology

91 Game theory, economics
62 Statistics

82 Statistical mechanics

93 Systems theory, control
80 Classical thermodynamics
83 Relativity theory

90 Operations research

74 Mech. of deform. solids
68 Computer science

85 Astronomy

0 =log,

5 4 3 2 A4
Negative Bias of Proc. AMS

Figure 2. Topical bias in Proceedings of the
American Mathematical Society. Bias is the
ratio of the fraction of publications in the
journal for a given subject to the fraction of
publications in all of mathematics for that
subject. Note that the scale is logarithmic to
the base 2. The journal had no papers about
the one subject at the bottom. Subjects with
strong positive or negative bias have red or
blue shading, respectively, to ease their
identification in other figures.

The bias of a journal for or against a given
branch of mathematics may be defined as the
ratio of the fraction of papers about the subject
in the journal to the fraction of papers about the
subject in all of mathematics. It is convenient to
represent the ratio as a base 2 logarithm, so a bias
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in favor has a positive value and a bias against has
a negative value. The Proceedings of the American
Mathematical Society thus has a positive bias for
group theory of 6.49/2.63 or 2.47 = 2+131,

Figure 2 displays the biases of the Proceedings
toward all the branches of mathematics. The
wide range of values indicates that the journal
is unrepresentative of mathematics research. It
has a strong bias (2! to over 2+2) in favor of
twenty-five subjects that are colored red in Figures
1 and 2. Comparing the figures reveals a strong
positive bias for three subjects that are of interest
to relatively few mathematicians, in that each
subject accounts for less than 1 percent of all
mathematics papers: commutative rings 13 (bias
2+258) abstract harmonic analysis 43 (bias 2+2-52),
and algebraic topology 55 (bias 272'7). In contrast,
the Proceedings has a neutral to slightly negative
bias for three subjects that are of interest to
many more mathematicians, in that each of them
constitutes over 4 percent of all mathematics
papers: ordinary differential equations 34 (bias
27039) " probability theory 60 (bias 27%°!), and
combinatorics 05 (bias 2-9-54).

The ratio of biases for two subjectsis easily seen
to equal the ratio of the conditional probabilities
that papers about the respective subjects would
appearin the journal. Viewed in this way, the biases
of the Proceedings are remarkable. For example,
the journal is roughly 6.5 =~ 2+217/2-05% times
more likely to be the publisher of a paper about
algebraic topology than about combinatorics.

The journal has a strong negative bias (2! to
much below) against eighteen subjects that are
colored blue in Figure 2. The same shading in Fig-
ure 1 reveals that the strong negative bias occurs
for many branches of mathematics about which
most papers are written. Indeed, the Proceedings
is strongly biased against seven of the ten most
heavily published subjects. Consequently, the gen-
eralist journal neglects subjects to which many
mathematicians contribute or whose very creation
is associated with some mathematicians. To cite a
few examples: Tukey [1] for statistics 62, Lax [11]
for numerical analysis 65, Moser [9] for mechanics
70, Ladyzhenskaya [4] for fluid mechanics 76, Do-
brushin [10] for statistical mechanics 82, Dantzig
[2] for operations research 90, Shannon [5] for
information theory 94, and, of course, Wiener [6]
for systems theory 93 and von Neumann [7] for
game theory 91.

The Transactions has roughly the same biases
as the Proceedings (Figure 3). Among heavily pub-
lished subjects that appear in quantity in either
journal, the Proceedings has stronger positive bi-
ases for functional analysis 46 and for operator
theory 47.

Explanations for the biases are in a sense
circular, in that authors submit where history
suggests acceptance is likely, or that editorial

DECEMBER 2010

Positive Bias of Trans. AMS
by Primary or Secondary Subject for 2000—2009

logb=0 1 2 3

Algebraic topology 55
7

Manifolds, cell complexes 5
Commutative rings 13
K-theory 19

Algebraic geometry 14
Topological groups 22
Several complex variables 32
Category theory 18

Group theory 20

Abstract harmonic anal. 43
Associative rings 16

Global analysis 58

Potential theory 31

Field theory, polynomials 12
Convex & discrete geom. 52
Fourier analysis 42
Differential geometry 53
Measure and integration 28
Nonassociative rings 17
Integral transforms 44
Number theory 11
Functional analysis 46

One complex variable 30
Special functions 33
Dynamical systems 37
General topology 54
Operator theory 47

Logic and foundations 03
General alg. systems 08
Ordered alg. structures 06
Real functions 26
Partial differential eq. 35
Combinatorics 05
Probability theory 60
Calculus of variations 49

Approximations

51 Geometry

15 Linear, multilinear algebra
40 Sequences and series

34 Ordinary differential eq.
45 Integral equations

39 Functional equations

70 Mech. of particles and sys.
82 Statistical mechanics

81 Quantum theory

76 Fluid mechanics

92 Biology

80 Classical thermodynamics
94 Information and comm.
78 Optics

74 Mech. of deform. solids
91 Game theory, economics
93 Systems theory, control
68 Computer science

65 Numerical analysis

62 Statistics

90 Operations research

83 Relativity theory

85 Astronomy

86 Geophysics

5 4 -3 -2 A
Negative Bias of Trans. AMS

0 =log,

Figure 3. Topical bias in Transactions of the
American Mathematical Society. The scale is
logarithmic to the base 2. Subjects are shaded
as in Figure 2 to ease comparison with the
Proceedings. The journal had no papers about
the two subjects at the bottom.

boards more accurately evaluate the familiar. For
example, not all branches of mathematics employ
just the telegraphic style that is prevalent in
these journals. Thus biases are self-perpetuating,
although surely procedures could be found so that
submissions that are exceptions to what is usually
published do not prove the rule.

The significant question raised by the data is
not how biases occur or how to manage them,;
rather, the question is whether the present topical
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distribution in generalist journals best serves
mathematics. Biases in professional journals im-
part an illusory picture of a field that can be
dangerous if it becomes so pervasive as to affect
the evolution of the underlying subject matter. In
the present case, because the sponsoring society
does not explain the topical selectivity of its gen-
eralist journals, and because the literature does
not examine the issue, in the absence of clarifying
public discussion, readers may assume that the
contents of the flagship journals confirm preju-
dices about the branches of the field. If unchecked
over many years, these opinions may influence de-
cisions about curricula, publications, and staffing
that can fragment the research community.

Such dissolution of mathematics may be oc-
curring already, as evidenced by the proliferation
and growth of fields, particularly since the mid-
dle of the last century, that have considerable
mathematical content but whose faculties and
professional societies have little overlapping mem-
bership. When different fields sponsor different
branches of mathematics, then the subfields may
adopt the cultures of their sponsors, so the
branches of mathematics eventually may come
to disagree over acceptable idiom, notation, rigor,
and terminology. Barriers among the branches
of mathematics entail a large opportunity cost,
so to speak, because possible collaborations and
synergies may not be realized. Moreover, as gov-
ernments increasingly view scientific research as
a component of national wealth, disparities may
be expected to grow in the allocation of resources
to the fields that encompass different branches
of mathematics. In this way the fragmentation of
mathematical research cedes to nonmathemati-
cians a greater degree of responsibility to choose
which branches of mathematics to encourage and
how they should develop.
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Book Review

Logicomix: An Epic Search for

Logicomix: An Epic Search for Truth

Apostolos Doxiadis and Christos H. Papadimitriou
with art by Alecos Papadatos and Annie di Donna
Bloomsbury USA, 2009

US$22.95, 352 pages, Paperback
ISBN-13:1596914520

Four-Sentence Description

Logicomix is a graphic novel about Bertrand Rus-
sell, focusing on his and other’s work on the
foundations of mathematics. Its structure is a
storyline within a frame within a frame. Being a
graphic novel, art is a major component. And there
is a terrific appendix, called Notebook, combining
minibiographies of many mathematicians and phi-
losophers (including Aristotle, Euclid, and Leibniz)
with a detailed, clearly written glossary.

Art

The art is superb, in the lineage of Hergé and his
great creation Tintin (I'm not the first person to
notice this), sometimes called the European style:
no overmuscled superheroes, no depressed losers,
and no extreme caricatures. People look reasonably
natural, color is important but not overwhelming,
there’s a sense of life and movement and a visual
sense of excitement when excitement is called for.
Maybe too much excitement at times; see below.

Storyline

Little Bertie grows up with enough family secrets,
family insanity, and emotional deprivation to fuel
several Bronté novels (by several Brontés). Like
many other smart kids in similar circumstances,
he turns to mathematics for stability. Unlike
most other smart kids in similar circumstances,
when he goes to college (Cambridge) he realizes

Truth

Reviewed by Judith Roitman

mathematics has no
real foundations, so
he decides to provide
them. Only to dis-
cover the worm in the
apple, a.k.a. Russell’s
paradox (the set of
all sets which do not
contain themselves).
With Whitehead, he
writes the Principia
Mathematica to pro-
vide the foundation
and cast the worm
from the apple (via
the theory of types). He encounters many famous
mathematicians and philosophers. Despite his
attachment to reason, he falls in and out of love,
marries several times, and has a huge crush on
Whitehead’s wife. He meets Wittgenstein. He ques-
tions his own work. He starts his long involvement
in politics and has an unsuccessful flirtation with
experimental education. This is not a chronological
description; several of these things happen at once.

The Inner Frame

The story is told by Russell himself during a talk
he gave at an unnamed American university on
September 4, 1939, the day Britain declared war on
Germany.! Accosted by a group of students want-
ing him to tell America not to go to war, he invites
them into the talk, tells them that he disagrees with
them, and tells the story of his life and work as a
way of explaining his views.

The Outer Frame

But the book does not open with Russell talk-
ing in 1939. It opens with Apostolos Doxiadis,

Judith Roitman is professor of mathematics at the Uni-
versity of Kansas. Her email address is roitman@math.
ku.edu.
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LI'm not sure if there really was such a talk, and if there
was, whether it took the form it took in the book. As we
are reminded throughout, this is a graphic novel.

NOTICES OF THE AMS
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the lead author, introducing us to his colleagues
(including the dog Manga)? and describing what
they are trying to do. The team will continue to
appear periodically, sometimes explaining a little
mathematics (Christos Papadimitriou does most
of this), sometimes trying to figure out what tack
to take, sometimes commenting on the greater
human meaning of what they are writing about.
The outer frame also ends the book, as the team
watches a performance of the last scene of the
Oresteia, when Athena invites the Furies to remain
in Athens as a benevolent force, a.k.a. the marriage
of reason (Athena) and passion (the Furies).3

The Team

This is not the first time Apostolos Doxiadis has
written a novel embedded in mathematics; he is the
author of Uncle Petros and Goldbach’s Conjecture.
Christos Papadimitriou is an eminent computer
scientist at Berkeley and the author of Turing
(A Novel About Computation) whose eponymous
hero is an interactive tutoring program. Alecos Pa-
padatos (who did the drawings, and who became
attracted to animation in high school as a way of
explaining geometry to his classmates—think locus
of points) and his wife Annie Di Donna (who did
the color) both have extensive backgrounds in ani-
mation. Di Donna is French; the others are Greek.4
The team (minus Papadimitriou) has branched

2Not a reference to Japanese graphic novels, but Greek
slang for somebody who is really cool.

3Full disclosure: my classicist husband courted me by
casting me in the role of Athena, with the great classicist
Gareth Morgan as all of the Furies put together.

4S0 why, in the English translation of the Greek original,
is Di Donna saddled with a French accent while her col-
leagues speak perfect English? Eet ees not fair!
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out with a graphic piece in the
Financial Times> on Claude
Levi-Strauss, staying within
the outer frame of the team
itself.6 Minor members of the
team are the visual researcher
and letterer Anne Bardy (who,
through her involvement with
a performance of the Oresteia,
has an important role), Dimi-
tris Karatzaferis, and Thodoris
Paraskeva, the inkers.

logicomix.com

Yes, there is a webpage, an
excellent one. It is clear from
the webpage that Logicomix has
alot of enthusiastic fans, some
of them quite famous, and
has won some well-deserved

awards. There is a nice Behind
the scenes tab which gives you
a glimpse of how a graphic novel is actually cre-
ated. But most revealing are the links to talks that
Doxiadis (with assistance from Papadatos) gave at
Cambridge and Birmingham. The Cambridge talk,
in particular, opens with Doxiadis talking about
his own life: his extreme distaste for mathematics
until, in early adolescence, he suddenly fell in love
with it. Within a year he was at Columbia University
doing mathematics, which he continued to do for
about eight years both at Columbia and in Paris.
Then, suddenly, faced with a difficult family situa-
tion back in Greece, he lost his love for the subject,
left it not quite completely (aside from Uncle Petros
and Logicomix, there’s a play about Godel), and
returned to his original loves of writing, cinema,
and theater. He has also been working with Barry
Mazur for a number of years on a project about
mathematics and narrative.

Intellectual Content

If you are writing about people who are seri-
ously invested in intellectual work, it’s helpful to
talk about their ideas, and, early on, Papadimitriou
is introduced as the guy who will make sure that
what the team says about logic makes sense. The
way logic and mathematics is explicated is terrific
and worth discussing. In one word: patience. In
seven words: patience embedded in story embed-
ded in art. You have to keep it interesting; your
reader isn’t worried about passing a test. But you
can’t pander, either; an insulted reader will stop
reading. So, for example, type theory is explained
during a croquet game by a caste society in which
you can only be shaved by a lower caste member

SFebruary 27, 2010.

6And using Oresteia to illustrate Levi-Strauss’s structur-
alism.
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(since N is the index set, no one in the lowest caste
gets shaved). It takes eleven panels to complete this
intellectual arc, including panels with somewhat
comically drawn men labeled 1, 2, 3, 4. . . carrying
razors, and a so-called local deity who looks like a
cross between Buddha and a maharajah. Plenty of
time for the reader/viewer to come to grips with
what is going on. Brilliant.

What Art Brings to the Table and What It
Takes Away

If Logicomix were just a nicely drawn graphic
novel about Bertrand Russell and other math-
ematicians/philosophers with a few fairly clear
explanations of basic set theory thrown in (such
as the Hilbert Hotel and Russell’s paradox), it
would not have gotten nor have deserved the at-
tention and praise it has received. What Logicomix
does that few works in any medium do is to make
intellectual passion palpable. That is its greatest
strength. And it’s here that its form becomes its
substance. For example, flipping at random, there
is a two-page spread of Wittgenstein with a thought
bubble saying, “The meaning of the world does
not reside in the world”7 while he stands in the
blasted landscape of a World War I battlefield
with strange clouds and vapors, a visually muffled
explosion in the near distance, and a haze around
the dark moon.8 Stunning. You just can’t do this
with words alone.

7Boldface as in the text, where it is done more subtly.

8Wittgenstein actually was a soldier in the front lines and
wrote his revolutionary Tractatus Logico-Philosophicus—
which he later disavowed—while a prisoner of war.

DECEMBER 2010

And that is where the problems come in. The
team keeps reminding us that this is a graphic
novel, but when it presents (1) powerful visual
images of Russell visiting an insane Cantor and (2)
powerful visual images of how this visit awakens
Russell’s personal demons resulting in (3) a power-
fully drawn three-page nightmare, the admission
in an afterword that Russell and Cantor actually
never met doesn’t overcome the image of Cantor
that has been implanted in the reader’s/viewer’s
mind. There are many scenes like this, powerfully
drawn scenes that never happened, most of them
involving some kind of madness. For me, the
most problematic—the reality must have been
painful enough—is depicting Hilbert lecturing on
mathematics outdoors, pushing away his adoles-
cent son who clings to him desperately to avoid
being hauled away to an insane asylum. The son
is pried away from the father, who, when someone
expresses sympathy, responds “I have no son.”?

Crazy

Which brings us to a major theme of Logico-
mix: the connection between logic and insanity.
I would say the purported connection, but it’s
clear that Doxiadis thinks there’s something to
this—the phrase used on p. 217 is “Logic from
Madness”—and he certainly marshals his evidence:
if his logicians aren’t crazy (Godel, Frege, Cantor)

9Hilbert did have a son who, at fifteen, was taken to an
insane asylum where he eventually died; Hilbert never
visited him there. Whatever judgment we may make of
this, the situation depicted in Logicomix is far more cruel.
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trip in which he was physically at-
tacked and, in a separate incident,
robbed, Papadimitriou decides that
Doxiadis is correct and that the
madness came from confusing
reality with intellectual maps,!3 at
which Doxiadis has the thought

of "turtles', all
+he way down!

bubble “what a perfect definition
of insanity!” On p. 230 we learn
that it was Russell’s “character, his
insecurities, his neuroses which
drove him to logic.” On p. 282
Doxiadis conjectures that “maybe
what brings them to logic is fear of
ambiguity and emotion.”

Sigh.

Your local neighborhood bar-
tender is a bartender because of
her character, her insecurities,
her neuroses (and her socioeco-
nomic situation at key times and
places, not to mention her per-
sonal circumstances)—why should
Bertrand Russell be any different?
What’s the big deal? People do
not read carefully, and the casual
reader could easily be left with

they have craziness in the family (Russell, Hilbert,
Wittgenstein);10 this linkage is a major subject of
the team’s discussions, and in some sense, the
book is structured by it.

On the first page we learn that the story we
are about to hear is “so sad”. On p. 24 we have
a reference to Gian-Carlo Rota’s article “on the
curiously high rate of psychosis in the lives of the
founders of logic,” and on this page the theme is
declared: not madness from logic but: “They be-
came logicians from madness.” On p. 78 we learn
that as a young man Russell wrote that he would
have killed himself if not for mathematics. On
p. 83 we have Russell saying that as a young man
he decided that madness was a disease pulling
weak spirits away from the natural harmony of
reason,!! and hence he should devote himself to
reason as his way out of his “dark legacy”.!2 On p.
201 Papadimitriou summarizes Doxiadis’s thesis
as that the foundational quest is a spiritual trag-
edy, which Doxiadis does not deny; two pages later
we learn that “less tortured characters would not
have found this price [e.g., 362 pages in the Prin-
cipia to prove that 1 + 1 = 2] worth paying.” On p.
217, after getting lost in the back streets of Athens
relying on childhood memories to find his way, a

10The judgment on Wittgenstein’s sanity is not clear.

UMy paraphrase. I am not a Russell scholar and don’t
know if he really said anything like this, but if he did it’s
especially poignant since no one is as rational as a para-
noid schizophrenic.

12t is certain that Russell was devoted to reason.
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an impression that logicians are

crazy. My own first impression
was that the authors believed that logicians are
crazy—the detail of the previous paragraph is
meant to qualify this impression. The authors
undercut their own case: not every logician who
appears is crazy, not every logician is motivated
by madness. Most important, the main character
is a major counterexample. Madness did run ram-
pant in Russell’s family, in both previous and later
generations.!4 He may have feared it, and various
aspects of his personal life (sexual relationships,
attitudes toward parenting, involvement with
progressive education, and perhaps—depending
on point of view—his politics) may have a bit of a
meshugeneh quality, but he seemed nevertheless
to have been eminently sane.

Tragedy and Triumph

Was Russell’s great effort in the Principia, as he
himself seems to have felt, a failure? As an adoles-
cent I delighted in Boole’s locution “dog dog = dog”
and repeated it to my friends, no doubt to their
great annoyance, but “x n x = x” is mathematically
powerful in a way that “dog dog = dog” is not.
Things explode when the right notation comes
along; Principia was an important part of this.

13Relating to the map theme, on p. 241 Wittgenstein
comes to a breakthrough understanding of the relation
between language and reality while observing German
army brass manipulating toy soldiers and toy cannons
while planning a battle.

14 Note that none of these mad relatives were logicians.
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Yet, except for his paradox, Russell’s name
doesn’t come up in logic texts. No mathematical
logic text cites Principia’s 362-page proof that
1 + 1 = 2. Except perhaps as a historical curios-
ity, mathematical logic texts generally don’t cite
Principia at all. Mathematicians don’t think about
or work within the theory of types.!> Mathematics
is usually done without much regard for a foun-
dational basis, and when you want a foundational
basis you turn to the (quite different) Cantor-
Zermelo-Fraenkel-von Neumann approach to set
theory; or, if you prefer, you turn to category
theory. The mathematically oriented pioneers of
mathematical logic and set theory at the beginning
of the twentieth century generally did not turn to
Russell and Whitehead for inspiration, and neither
do their descendants.

With at least one exception, and that’s a big one:
Godel not only read the Principia'6 but entitled
his pioneering monograph on incompleteness
theorems On Formally Undecidable Propositions
of Principia Mathematica and Related Systems. Of
course, what the incompleteness theorems say is
that Russell’s quest for mathematical certainty is
doomed. You can summarize this by: the Principia
was, in some sense, crucial to that part of Godel’s
work which, as a by-product, destroyed the pur-
pose of Principia.

But while Doxiadis sees this as a tragedy, Pa-
padimitriou sees the narrative arc as a triumph,
leading to Turing and computer science: “No, it’s
a total triumph! and it abounds in happy endings,
the happiest being that the tools of reason are at
everybody’s fingertips!” Cue the Oresteia.

Gender

A final word on gender. The characters in Logi-
comix tend to be, if you'll excuse the expression,
incomplete. The men tend to be bumbling fools
caught up in their intellectual enthusiasms, occa-
sionally commenting on the stupidity of women.
The women tend to be practical, aware of the
physical world that the men scarcely notice. There
are, of course, counterexamples to this polarity
(e.g., Evelyn Whitehead thinks that she is dying
when it’s only an anxiety attack), but the overall
pattern is clear, even in the team’s contemporary
interactions. Anne rescues Papadimitriou from his
disastrous adventure. Annie is full of clever com-
mentaries on the intellectual action, but they are
commentaries only; the actual ideas spring from
Doxiadis and Papadimitriou. Only Athena seems to
be completely human. Maybe you have to be a god
to be fully human, but I would hope not.

L5Except, of course, for mathematical logicians who spe-
cialize in it as one would specialize in, say, commutative
groups.

16 perhaps the only person who ever did in its entirety, as
Logicomix points out.
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Division Algebras and
Wireless Communication

B. A. Sethuraman

he aim of this note is to bring to the at-

tention of awide mathematical audience

the recent application of division alge-

bras to wireless communication. The

application occurs in the context of
communication involving multiple transmit and
receive antennas, a context known in engineer-
ing as MIMO—short for multiple input, multiple
output. While the use of multiple receive anten-
nas goes back to the time of Marconi, the basic
theoretical framework for communication using
multiple transmit antennas was only published
about ten years ago. The progress in the field has
been quite rapid, however, and MIMO communica-
tion is widely credited with being one of the key
emerging areas in telecommunication. Our focus
here will be on one aspect of this subject: the
formatting of transmit information for optimum
reliability.

Recall that a division algebra is an (associative)
algebra with a multiplicative identity in which
every nonzero element is invertible. The center of
a division algebra is the set of elements in the
algebra that commute with every other element in
the algebra; the center is itself just a commutative
field, and the division algebra is naturally a vector
space over its center. We consider only division

B. A. Sethuraman is professor of mathematics at Cali-
fornia State University Northridge. His email address is
al.sethuraman@csun.edu.

The author is supported in part by NSF grant DMS-
0700904. The author wishes to thank P. Vijay Kumar
for innumerable discussions during the preparation of
this article; his counsel was invaluable, his patience mon-
umental. The author also wishes to thank Frederique
Ogagier for her careful reading of a preliminary version of
this article.
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algebras that are finite-dimensional as such vector
spaces. Commutative fields are trivial examples
of these division algebras, but they are by no
means the only ones: for instance, class-field
theory tells us that over any algebraic number
field K, there is a rich supply of noncommutative
division algebras whose center is K and are finite-
dimensional over K.

Interestin MIMO communication began with the
papers [21, 10, 24, 11], in which it was established
that MIMO wireless transmission could be used
both to decrease the probability of error and to
increase the amount of information that can be
transmitted. This result caught the attention of
telecommunication operators, particularly since
MIMO communication does not require additional
resources in the form of either a larger slice of the
radio spectrum or increased transmitted power.

The basic setup is as follows: Complex numbers
Re'?, encoded as the amplitude (R) and phase (¢)
of aradio wave, are sent from t transmit antennas
(one number from each antenna), and the encoded
signals are then received by r receive antennas.
The presence of obstacles in the environment, such
as buildings, causes attenuation of the signals; in
addition, the signals are reflected several times
and interfere with one another. The combined
degradation of the signals is commonly referred to
as fading, and achieving reliable communication
in the presence of fading has been the most
challenging aspect of wireless communication.
The received and transmitted signals are modeled
by the relation

Yr><1 = Qertthl + Wr><1

where X is a t x 1 vector of information signals,
Y is an r x 1 vector of received signals, W is an
r x 1 vector of additive noise, H is an r X t matrix
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that models the fading, and 6 is a real number
chosen to multiply the information signals so as
to fit the power available for transmission. Under
the most commonly adopted model, the entries
of the noise vector W and the channel matrix
H are assumed to be Gaussian complex random
variables that are independent and identically
distributed with zero mean. (A Gaussian complex
random variable is one of the form w = x + 1y,
where x and y are real Gaussian random variables
that are independent and have the same mean and
variance. The modulus of such a random variable,
and in particular the magnitude of each fading
coefficient h;;, is then Rayleigh distributed. This
model is hence also known as the Rayleigh fading
channel model.) It is the presence of fading in the
channel that distinguishes this model from more
classical channels, where the primary source of
disturbance is the additive Gaussian noise W.

A common engineering model is to assume
that the channel characteristics (i.e., the fading
coefficients h;;) stay constant in some fixed but
small time interval and that these characteristics
are known to the receiver but not the transmit-
ter. (This is known as coherent transmission.) If
each antenna can transmit n times during such an
interval, then the transmission process is compart-
mentalized into blocks of length n: each antenna
transmits n times, and each receiver waits to re-
ceive all n transmissions before processing them.
A common simplifying assumption is to take
¥ =t = n, and the equation above is accordingly
modified to read

(1) Yn><n = Oananxn + ann-

Thus the ith column of Y, 6X, and W represent
(respectively) the received vectors, the transmitted
information, and the additive noise from the ith
transmission. A measure of the power available
during a single transmission from all n antennas,
i.e., a single use of the telecommunication chan-
nel, is the signal-to-noise ratio (SNR) p. Recall that
the Frobenius norm ||X|[r of X = (x;;) equals

/2.0 1xi,12. Since the power required to send a
complex number varies as the square of its mod-
ulus, the normalization constant 0 must satisfy
0211X|1}? < np.

A subset S of the nonzero complex numbers
known as the signal set is selected as the alphabet
(a common situation is that S is a finite subset of
size g of the nonzero Gaussianintegers Z[1] —{0}),
and a k-tuple (sy,S>,...,5), S; € S, constitutes the
message that the transmitter wishes to convey to
the receiver. Thus there are g8 messagesin all, and
it is assumed that each message is equally likely
to be transmitted. A space-time code is then a one-
to-one map X: S — M,,(C); we write X for X(S¥).
The transmitted matrix 0X,x, in Equation (1) is
thus drawn from the set 0.X as (s, S2,...,Sk) vary
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in Sk. Often X itself is referred to as the space-
time code. It is typically assumed that the map
X is “linear in S*”, that is, it is the restriction
to S of a group homomorphism (S)* — M, (C),
where (S) is the additive subgroup of C generated
by S. (The term “space-time” refers to the fact
that information (s, S2,...,Sk) is packaged in the
spatial direction by sending it out through several
physically separated transmit antennas and in the
time direction by sending it out in n consecutive
transmissions.)

Under the information-theoretic framework de-
veloped by Shannon in 1948 ([18]) and adopted
ever since within the telecommunication commu-
nity, the amount of information conveyed by a
message in this setting is equal to log, (g*) “bits”.
Since this amount of information is conveyed
in n transmissions over the MIMO channel, the
rate of information transmission is then given by
slogz(q) bits per channel use. When g and n are
fixed a priori, the quantity k serves as a measure
of information rate.

Reliability of communication is commonly mea-
sured by the probability P, of incorrectly decoding
the transmitted message at the receiver. The pair-
wise error probability P, (i, j) (for i # j) is the
probability that message i is transmitted and mes-
sage j is decoded. Performance analysis of MIMO
communication systems typically focuses on the
pairwise error probability, as it is easier to es-
timate and also because the error probability P,
can be upper and lower bounded in terms of the
pairwise error probability.

It was shown in [21, 11] that for a fixed SNR
(i.e., power) p, in order to keep the pairwise error
probability low, the space-time code X must meet
the two criteria below, of which the first is primary:

(1) Rank Criterion: For s := (s1, 82,...,8¢) and

s 1= (s1,8,...,8;) with s = s’, the differ-
ence matrix

X(s) = X(s')
must have full rank n, i.e., it must be

invertible.

(2) Coding Gain Criterion: For s and s’ as
above, s # s’, the modulus of the determi-
nant of difference

[det(0X(s) — 0X(s"))]
must be as large as possible.

Clearly, the second criterion comes into play only
when the first criterion has been met but then
subsumes it. Each criterion impacts a different
communication parameter, and the two are hence
stated independently. Note that one cannot arbi-
trarily scale the matrices X to increase the coding
gain because the assumption of fixed p, along with
the relation 62]|X||% < np, would simply cause a
corresponding decrease in 0. Note too that one
cannot increase the quantity k (a proxy for the rate

NOTICES OF THE AMS



of information) arbitrarily, as this would create
a larger set of matrices 60X all circumscribed to
lie within a sphere of radius ,/np, which would
then cause the determinant of their differences
to get smaller, thereby going against the second
criterion.

Satisfying the Rank Criterion

The earliest space-time code, for two antennas,
was given by an engineer, Alamouti ([1]): given an
arbitrary signal set S, he chose X: S? — M,(C) to
be

) X(s1,52) = ( - )

(wheres; stands for complex conjugation). Itis easy
to see that the rank criterion is immediately met.
Writing s; = u; +1u», S, = U3 +1uy4, each such matrix
can be expressed in the form X (s, ) = Zle U;A;.
The 2 x 2 complex matrices A; are such that for
any complex 2 x 2 channel matrix H, the collection
of 2 x 2 matrices {HA;} is pairwise orthogonal
when regarded as vectors in R® by writing out
sequentially the real and imaginary parts of each
entry of the {HA;}. The expansion above makes
it possible to do a least squares estimation of the
u; from the received matrix Y, also considered as
a vector in R® as above, by projecting onto the
respective matrices HA; (we will consider this in
more detail later). It is this property that makes
the Alamouti code so easy to decode, and, not
surprisingly, the code has since been adopted
into the IEEE 802.11n “Wireless LAN” standard. In
applications, the {s;, s>} are typically drawn from
a subset of Z[1] x Z[1].

Alamouti’s code led to a furious search among
engineers and coding theorists for generalizations
for higher numbers of antennas. Much of the early
work (see [22], for example) focused on combinato-
rial methods. The matrix X in Equation (2) is almost
unitary: it satisfies XX = (5,57 +5,5,) I, where the
superscript T stands for transpose conjugate, and
I, stands for the 2 x 2 identity matrix. Not surpris-
ingly, early workers (see [22], for example) sought
n X n matrices X(sy,...,Sx) whose entries come

from the set {+s;, =5}, =1s;, =15;, j = 1,...,k} and
satisfy
3) XX = (51357 + -+ -+ SO

This quickly leads to a necessary condition: the
existence of 2k — 1 complex n X n matrices A;
satisfying Af A; = I, Al = —A;, and AjA; = —AA;
for 1 <i < j <2k — 1. These are, of course, the
Hurwitz-Radon-Eckmann matrices, and classical
results of Hurwitz-Radon-Eckmann (see [6], for
instance) severely limits the values of k for which
such matrices can exist. If n = 29(2b + 1), then
the Hurwitz-Radon-Eckmann result says that the
maximum possible value of k equals (a+1). Thus
k:nifandonlyifn=2,ks‘%”forn>2,and
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k < 5 for n > 4. It follows that these general-
izations of the Alamouti code transmit too few
information symbols for more than two transmit
antennas. (A similar analysis of the matrices A; us-
ing representations of Clifford algebras was made
by Tirkkonen and Hottinen in [20].)

In 2001 Sundar Rajan, a professor of com-
munication engineering at the Indian Institute of
Science, introduced the problem of designing ma-
trices X(si,...,Sx) satisfying the rank criterion
to this author. Given his algebraic background,
this author could recognize easily that matrices
arising from embeddings of fields and division
algebras can be utilized to solve this problem. Let
f: D — M,(C) be an embedding, i.e., an (injective)
ring homomorphism of a division algebra D into
the n x n matrices over C. Then for X; = f(d;)
and X, = f(dy) (X; = X»), X; — X, must neces-
sarily be invertible. This is because d; — d», being
a nonzero element of the division algebra D, is
automatically invertible, and since f is a homo-
morphism, the same must also be true of X; — X.
Thus the matrices in f(D) automatically satisfy
the rank criterion. Using this observation, Sun-
dar Rajan, his Ph.D. student Shashidhar, and this
author ([19]) proposed several schemes for con-
structing space-time codes from various signal
sets. For each signal set S and for each n, they
constructed suitable division algebras D, suitable
embeddings f: D — M, (C), and suitable injective
maps X: S¥ — f(D), for suitable k.

For simplicity of construction in the noncom-
mutative case, the authors of [19] used cyclic
division algebras for their codes. A cyclic divi-
sion algebra is constructed from two data: a field
extension K/F of degree n that is Galois with
cyclic Galois group (o), and a nonzero element
y € F that satisfies the property that for any
i=1,....,n-1,y'is not a norm' from K to F. As
a K-vector space, the algebra is expressible as

n-1
D = PKul

i=0
where u is a symbol. The multiplication in this
algebra is given by the relations uk = o(k)u
for all k € K, and u" = y. The bilinearity of
multiplication, along with these relations, then
allows us to determine the product of any two
elements of D. One can prove that this construction
indeed yields a division algebra with center F. (Such
a division algebra is said to be of index n.)

There is a well-known embedding of such a D

into M, (K) that sends ko + kyu + - - - k,_ u™ ! to

YThis is a sufficient condition to obtain a cyclic division
algebra.
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ko yo(kp-1)  yo?(kn-z) yo" (ki)
ky o (ko) yo?(kn-1) Yo"l (ke)
k2 o (ki) o2 (ko) yol(ks)
(4) k':; 0'("<2) 0'2(.’(1) YUnil(k.;)
ki Okng) 02 (ko) Yo" (kn-1)
kn-1 o(kn-2) 02 (kn-3) o1 (ko)

By taking F to be various subfields of C containing
Q(S) (the field generated by the elements of S
over Q) in this formulation, and for each such F
taking various K and y, a wide variety of space-
time codes can be constructed for a wide range of
signal sets. For further simplicity of construction,
particularly in the selection of the element y above,
the authors of [19] chose all their base fields F to
contain transcendental elements; in most cases,
their cyclic extensions K/F were of the form
Ko (x)/Fo(x), where K,/F, is a cyclic extension of
number fields, and x is a transcendental. In these
cases, the authors’ construction yielded codes
X: 8™ — M,(C), ie., with k = n2.

Alamouti’s original code above arises as a
special case of this formulation: the matrices
of Equation (2) are just the matrices of Equa-
tion (4) above specialized to the cyclic algebra
(C/R,0,-1), where o stands for complex con-
jugation. This is nothing other than Hamilton’s
quaternions: the four-dimensional R algebra R &
R1® Rj @ Rk subject to the relations 1> = j = —1,
1j = —j1 = k. (The signal set in Alamouti’s con-
struction is contained in K instead of F, unless of
course S is real.)

Satisfying the Coding Gain Criterion

The coding community immediately recognized
the potential of cyclic division algebras as a funda-
mental tool for constructing space-time codes and
began to work with the coding paradigm intro-
duced in [19]. However, there was still a drawback.
Although the specific codes of [19] certainly sat-
isfied the rank criterion, their performance was
not satisfactory. The reason for this became clear:
the specific division algebras of [19] were pro-
posed only for mathematical simplicity—merely
as easy examples of the larger paradigm of di-
vision algebras—and were not optimized for the
coding gain performance criterion above. The use
of transcendental numbers in the codes in [19]
caused the determinants of the difference matri-
ces to come arbitrarily close to zero and limited
their performance.

This situation was quickly remedied in [2] by a
very clever technique. To provide a lower bound on
the moduli of the determinants of the difference
of code matrices, the authors Belfiore, Rekaya,
and Viterbo first constructed division algebras
from cyclic extensions K/Q(1) and y € Z[1], but
then restricted the various k; in the matrix (4)
above to entries in O, the ring of integers of K.
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The net result, as can easily be seen, is that the
determinant of the difference of any two such
matrices will live in Z[1] and therefore will have
modulus bounded below by 1. Moreover, this will
be true no matter how large a subset of Z[1] is used
as the signal set. They called this last property
the “nonvanishing determinant property”, and
they called the specific code they proposed the
Golden Code. It was so named for the Golden
Ratio that appears naturally: it is derived from
the division algebra (Q(1,+/5)/Q(1), o,1). Here, o
is the automorphism of K = Q(1,+/5) that sends
V5 to —+/5 and acts as the identity on Q(1). A
Z[1]-basis for Ok is given by 1 and ¢ = “Tﬁ Write

g foro(p) = 1’Tﬁ.Forasignal setS c Z[1] c Q(1)
(the most common kind of signal set), this code
sends S* to M, (C) via the matrix

5) 1 [ Sonx+ S0 1(81,10 + 51200)
U5\ S+ S0 S010 + S5020Q )
Here, the —= scale factor, @ = 1 +1(1 — ¢),

and 0 = o(x) = 1+1(1 — ) are used to shape
the code (more on this later). Comparing with
the matrix (4) above and ignoring the scale fac-
tor, we see that kg = sp & + Sppox¢p and k; =
S11x + $120x¢p. Note that this code encodes four
information symbols in each matrix. (A variant
of this code, also based on the division algebra
(Q(1,/5)/Q(1), o, 1), also incorporating the shap-
ing criterion described later, is currently part of
the IEEE 802.16e “WiMAX” standard. The Alamouti
code based on the quaternions is also part of this
standard.)

With the introduction of cyclic division algebras
as a fundamental construction paradigm and with
the use of codes constructed with entries from
Ok for suitable extensions of Q(1), the subject of
space-time coding took off. It is harmless and very
often actually useful to assume that the signal set
S is infinite: typically, S is assumed to be one of
the standard lattices 7, Z[1] or the Eisenstein lat-
tice Z[w], where w stands for the primitive third
root of unity ’”Tm (Under these assumptions
the code forms an additive group, so one only
needs to consider the rank of X(sy,..., sx) and the
modulus of the determinant | det X (sy,...,S)| in
the rank criterion and the coding gain criterion.)
Coding theorists immediately looked for specific
constructions of division algebras of the form
(K/F,o,y) for the cases where F = Q, F = Q(1),
and F = Q(+/-3), corresponding to signal sets
equaling one of the three lattices above. While
such constructions have been known in principle
to mathematicians working with division alge-
bras, the coding theorists absorbed the necessary
number-theoretic background in very short order
and explicitly constructed division algebras over
such fields for all indices n ([15] and [7]). (The
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hard task here is to select y € Of so that it has
the property that y' is not a norm from K to
F fori=1,...,n—1.) In all such cases, an Op-
basis B; of Ok is chosen, and each k; is written
as Z?:lsi, iBj for s;; in the signal set. Thus n?
elements from the signal set are coded in each ma-
trix, and by construction, the determinant of each
matrix is nonzero and lies in one of the discrete
lattices above. The modulus of the determinant
will therefore be bounded below by the length of
the shortest vector in the lattice so the code will
have the nonvanishing determinant property.

Other Performance Measures

In parallel, as the subject became better under-
stood, several additional performance criteria
started to be imposed on codes. In a funda-
mental paper ([25]), Zheng and Tse provided a
precise quantification of the trade-off (known as
the diversity-multiplexing gain or “DMG” trade-
off) between information rate and reliability. They
defined numerical measures for each of the ben-
efits and showed that the pair of benefits lie
in a region of the first quadrant whose upper
boundary is a piecewise linear concave up curve.
In the paper [7], Vijay Kumar and his students
showed that all codes constructed from cyclic di-
vision algebras with the additional nonvanishing
determinant property will automatically perform
at the upper boundary of this region and will
hence be “DMG optimal”. This of course further
cemented the use of cyclic division algebras for
code construction.

Another set of criteria was proposed by Oggier
and coworkers in the paper [17]. One first rewrites
the matrix (4) as a single n?> x 1 vector. When
ki = X1 sijB; for s;; in the signal set and B;
an @ basis for Ok, this n? x 1 vector can be ex-
pressed as M.V, where M is an n?> x n> matrix and v
is the column vector (So,1,80.2, -« Sijs---»Sn-1,) 7.
One now requires that the matrix M be unitary
and that |y| = 1. The first condition is called good
shaping, and the idea behind it is that this forces
the average energy needed to send the vector Vv
without coding to be the same as that needed to
send it in the coded matrix form (4). The condition
|yl = 1 causes the average energy transmitted per
antenna to be equal for all transmissions. Oggier
and coworkers called such codes “perfect” and
constructed perfect codes for n = 2,3,4, and 6.
This was followed by work of Elia and cowork-
ers ([8]), who constructed perfect codes for all
values of n and additionally showed that perfect
codes satisfy other information-theoretic proper-
ties such as information-losslessness (a concept
introduced by Damen and coworkers in [4]) and
approximate universality (a concept introduced by
Tavildar and Viswanath in [23]).
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The mathematics needed for the work on perfect
codes is quite interesting. Analyzing the condition
that M be unitary, we find that it is sufficient to
make the following matrix unitary:

B Bn
o(B1) o (Bn)
U({Bll"'an}) =
a1 (B1) a1 (Bn)

Here, it is not necessary that the ; be an O basis
of O; it is sufficient that they be an O linearly
independent subset of Ok. (So, for example, in the
Golden Code (5) above, « is chosen so that with
B1 = xand B> = x¢, the matrix

X oo
0 oy
is unitary after being multiplied by the LS scale

factor.) So the question is: how to find Of sub-
modules of Ok that satisfy this unitary condition?
For n = 2%, it is easy to see that for the field
K = Q(C) and F = Q(1), where T is a primitive
2b+2th root of unity, the various powers of € are
Z[1]-linearly independent and satisfy the unitary
condition above. For odd n, Elia and coworkers use
a construction due to B. Erez [9] that was needed
in a different context: Erez was showing that for
certain cyclic extensions K/Q with Galois group
G, the square root of the inverse different is a free
7] G] module that has an orthogonal basis with
respect to the usual trace form on K that sends
X,y to Trg,q(xy).

The most recent performance criteria for space-
time codes, and in some sense the most mathe-
matically exciting, have come from Lahtonen and
coworkers ([13]). For the usual cases in which S
is one of 7, Z[1], Z[w], it is easy to see from the
linearity of the code matrices X that on writing
each X as an n® x 1 vector as above and separating
the real and imaginary parts, one gets a full lattice
in R2", i.e., the additive group generated by 2n°
linearly independent vectors in R2". We refer to
this lattice as the code lattice. After normalizing
all code matrices so thatinfycy | det(X)| = 1, they
postulate that codes whose lattice points are the
most dense in R2"* will have the best performance,
and, indeed, they find this is borne out in several
circumstances by simulations. To obtain a suitable
numerical measure for the relative density, they
invert the situation: they normalize the code lat-
tice to have fundamental volume 1 instead. Thus
they define the normalized minimum determinant
of a code lattice A of rank 2n? in a Q(1) divi-
sion algebra of index n (embedded in M,(C)) as
the minimum of the moduli of the determinants
| det(X(s1,...,8,2))| as X(S1,...,S,2) runs through
the lattice, divided by the fundamental volume of
A. Since a smaller fundamental volume represents
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a higher density, the goal is to construct codes
whose code lattice A would maximize this ratio
among all full lattices in the division algebra.

Recall that if D is a division algebra with center
F and if R is a subring of F whose quotient field
is F, then an R-order in D is a subring T of D
containing R that is finitely generated as an R-
module and satisfies TF = D. A maximal R-order
is one that is maximal with respect to inclusion.
In the typical situation where S is one of 7Z, Z[1],
or Z[w], so F is one of Q, Q(1), or Q(~/=3), and
where the k; of the matrices in (4) are constrained
to lie in Ok and y € Op, the code matrices of (4)
naturally form an S-order. Thus the code matrices
have a dual structure of an S-order and a full lattice
in R2"°. Lahtonen and coworkers investigate the
interplay between these two structures. They ask:
How will the code’s performance as measured
by its normalized minimum determinant vary if,
in addition to carrying its natural structure of a
full Z-lattice in [RZ”Z, we choose our code to form
an arbitrary S-order inside an F-division algebra?
In these cases, the minimum modulus of the
determinants of the code matricesis 1, soit follows
from the definition of the normalized minimum
determinant that the smaller the fundamental
volume of the lattice the better the code. If T; and
T, are S-orders and A1, and Ar, the corresponding
lattices with fundamental volumes V;, and Vi,
then T, < T, implies Ay, & Ag,, which in turn
means that Vy, < Vg,. It follows therefore that
the best normalized minimum determinant will
arise when a maximal order is used for the code.
The authors then relate the fundamental volume
of the code lattice to the Z-discriminant of the
maximal order and then invoke known formulas
for discriminants of maximal orders to compute
the best normalized minimum determinant of
codes arising from Or ordersinside a given division
algebra.In particular, they show (for the fields Q (1),
Q(+/-3) and Q) that the best division algebras to
use will be ones that are ramified at precisely two
of the “smallest” primes of the field (where the size
of a prime P =< 11 > is defined to be the modulus
|tt]). Thus, for Q(1) for example, one needs to
transmit on a code arising from a maximal order
inside a division algebra ramified only at (1 + 1)
and (2 +1) (or (2 —1)). (Much of this was part of
Vehkalahti’s Ph.D. thesis.)

One of the drawbacks of using maximal orders
is that the corresponding code lattice may not
have good shape. Thus optimizing a code for min-
imum normalized determinant may destroy any
optimization for shape. The recent work of Raj
Kumar and Caire ([3]) proposes a very clever tech-
nique of mapping lattice points to certain cosets
of a suitably chosen sublattice of a standard cubic
lattice; this smooths out an irregular lattice and
gives it better shape. In particular, their technique
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applies to codes from lattices from maximal or-
ders and provides a further performance boost in
such cases.

Key Challenge: Decoding

What are some of the key problems that need
to be solved in space-time codes? Perhaps the
biggest engineering challenge in the subject is the
issue of decoding. The problem quite simply is
the following: given the received vectors in Y (see
Equation (1)), determine the entries of the matrix
X that represent the original information. Assume
that k symbols are coded in the matrix X and that
the entries of X are linear in the signal entries
S1, ..., S (typically arising from 7, Z[1], or Z[w]).
By writing out sequentially the real and imaginary
parts of each entry of Y, W, and sy, ..., S, we
may rewrite Equation (1) as Y = Zv + W. Here Z
is a 2n® x 2k real matrix that depends on H, 0,
and the parameters of the code matrix X, Vv is the
signal vector (X1, Vi,...,Xi, Viy---, Xk, Vk) L with x;
and y; being the real and imaginary parts of s;, and
similarly for Y and W. If the columns of Z were
orthonormal, decoding would be quite simple: we
would have ZTY = v + ZTW with ZTW also hav-
ing independent, identically distributed Gaussian
entries. Hence, under maximum likelihood esti-
mation, ¥V can be taken to be the closest vector
in Sk (viewed inside the Euclidean space R%) to
ZTY. This is a very simple and computationally
fast scheme: we march through Z TY component
pair by component pair, and we find the element
of the signal lattice S closest to that component
pair.

The process above is called single symbol de-
coding. (For k < n? this is the same as orthogonal
projection onto the subspace of R2" determined
by the columns of Z.) There are some nice sit-
uations in which the matrix Z is (essentially)
orthogonal; this happens in the case of the
Alamouti code, and more generally, in the codes
satisfying Equation (3). The matrix Z for such codes
satisfies ZZT = 0°Tr(HH')I,x. We may divide the
relation Y = Zv+ Wby O Tr(HH?'). The entries of
the new noise vector 1/(0/Tr(HHT)) W are still in-
dependent identically distributed Gaussian, while
the columns of the matrix 1/(0Tr(HH'))Z are
now orthonormal. Thus single symbol decoding
can be employed in all these cases.

But for other codes Z is rarely orthogonal!
In general, given that the entries of W are in-
dependent identically distributed Gaussian, for
maximum likelihood estimation one needs to
search in S (viewed inside the Euclidean space
R2"*) for that vector v = (X1, y1, ..., Xn2, Vn2) ! such
that Zv is closest to Y. (Here we will assume
that k = n?, as is usually the case for codes from
cyclic division algebras.) This can no longer be
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accomplished symbol by symbol, and one needs
to search in the full space S instead of justin S.
There is an algorithm called the sphere decoding
algorithm (see [5], for instance) that accomplishes
this search in an intelligent manner, but as is to be
expected of any search in S, even this algorithm
gets very cumbersome once n exceeds 2. (One must
keep in mind that the search for Vv such that Zv
is closest to Y is essentially a closest lattice point
search, and this is known to be NP-hard. What
saves the day is that the received vectors Y are not
random but have a Gaussian distribution about
the lattice vectors ZV. In [12], Hassibi and Vikalo
show that under certain technical assumptions,
the expected complexity of the sphere decoding
algorithm is polynomial, although the worst-case
complexity is exponential.)

Since Z israrely orthogonal, we may ask whether
we can take advantage of the obvious algebraic
structure of the code and simplify the closest
vector problem for our particular application. A
very clever set of ideas of Luzzi et al. [16] does
just that and gives an approximate solution to the
decoding problem for the Golden Code (Equation
(5)) by reducing the situation to the action of
SL,(C) on three-dimensional hyperbolic space H3.
Their work is a veritable tour de force of the ap-
plication of abstract mathematics to engineering
problems. Their goal is to approximate the channel
matrix H (normalized to have determinant 1) by
an element U of determinant 1 in the Z[1]-order
R = (Ok/Z[1], 0,1). Writing H = EU with E simply
being the error HU !, they argue that choosing U
so that the Frobenius norm of E-! = UH! is min-
imized approximates the original problem by the
following: given a vector Y in C" and an unknown
vector S in Z[l]”Z determine a “best” estimate of
S if the difference vector W = Y — S is known
to be approximately independent identically dis-
tributed Gaussian (in a suitable sense). Given this
assumption about the noise vector W, areasonable
way to proceed is to assume that W is actually
independent identically distributed Gaussian. In
this situation, the maximum-likelihood estimate
of S is obtained by taking the ith entry of S to be
the lattice point in Z[1] closest to the ith entry of
Y. The authors find that their scheme gives a fast
and acceptably accurate decoding.

What is fascinating is the mathematics behind
their choice of U. First, they need to determine
generators and relations for the group of norm 1
units ‘U; (R) of R (i.e., the set of multiplicatively
invertible elements of R whose determinant as a
code matrix is 1). In general, it is very difficult to
find these for orders in division algebras, but in the
case of certain special quaternion algebras over
number fields, generators and relations for ‘U; (R)
are known. Much of the idea behind this goes
back to Poincaré. The norm 1 units in the order R
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above (modulo the subgroup {+1}) turns out to be
a Kleinian group, i.e., a discrete subgroup of the
projective special linear group PSL,(C). As a sub-
group of PSL>(C), U;(R) (modulo {+1}) acts on
the upper half-space model of hyperbolic 3-space
H?3 as a group of orientation-preserving isometries,
and Poincaré’s fundamental polyhedron theorem
gives a set of generators and relations for such
a group in terms of certain automorphisms of a
fundamental domain for the group. Given a point
P in H3, the Dirichlet polyhedron centered on P
is the closure of the set of points x such that
dy(x,P) < dg(g(x),P) for all g € U;(R) (modulo
{+1}), g # 1, where dy is the hyperbolic metric on
H3. The authors construct a Dirichlet polyhedron
centered on J = (0,0,1); this is a fundamental
domain for U;(R). From this polyhedron, using
Poincaré’s theorem and a computer search, they
determine a set of generators of U;(R). They do
this ahead of time and store the results. Next, in
real time, given a fading matrix H (normalized to
have determinant 1), they need to find an element
U of ‘U; (R) such that the Frobenius norm of UH !
is minimized. They observe that viewing UH ! as
an element of PSL,(C) acting on H?, the Frobe-
nius norm of UH ! is just 2 cosh dg(J,UH"'(])),
where J and dy are as above. Since U is an isom-
etry, they must find U € U, (R) that minimizes
cosh dg(U="(J),H '(J)). From the definition of
Dirichlet polyhedra, this means that they need
to find a Dirichlet polyhedron centered on some
U~'(J) which contains H-'(J). They use the ge-
ometry of H? relative to the action of U;(R) to
find such a U: they just need to repeatedly con-
sider the various Dirichlet polyhedra centered on
J and the various g;(J), where the g; run through
the generators of U; (R) that they have computed
ahead of time, along with their inverses.

Role of Mathematicians

What is the role of mathematicians in this field?
The subject is clearly very mathematical; yet, un-
like classical coding theory, which now has a
mathematical life of its own and can, for instance,
be thought of as a theory of subspaces of vec-
tor spaces over finite fields, the center of gravity
of space-time codes currently lies very solidly in
engineering. There is as yet no deep independent
“mathematics of space-time codes”: the driving
force behind the subject consists of fundamental
engineering problems that need to be solved be-
fore MIMO wireless communication reaches its full
practical potential, particularly for three or more
antennas. This author therefore believes that, as
things stand now, isolated mathematical investiga-
tions of space-time codes that are not grounded in
concrete engineering questions would very likely
lead to sterile results. At least for now, mathe-
maticians can best contribute to the subject by
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working in collaboration with engineers who are
motivated by fundamental engineering questions.
This author has found that the leading engineers
in the field already have a practical and intuitive
understanding of much abstract mathematics but
welcome help from trained mathematicians. (This
author has also found that they are a genuine plea-
sure to collaborate with.) There is clearly a lot of
work for mathematicians to do: particularly in de-
coding systems with large numbers of receive and
transmit antennas, but also in other areas of MIMO
communication that we have not touched upon in
this article, such as cooperative communication in
networks, or noncoherent communication, where
the matrix H is not known to either the receiver
or the transmitter.
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WHAT [|§ ..

a Mock

Modular Form?

Amanda Folsom

The tale has been told and retold over time.
The year: 1913. An unlikely correspondence begins
between prominent number theorist G. H. Hardy
and (then) poor Indian clerk S. Ramanujan. A math-
ematical collaboration between the two persists
for the remainder of Ramanujan’s lifetime: a mere
seven years, until his untimely death at the age
of thirty-two. New to the tale yet rooted in the
Hardy-Ramanujan era is the modern notion of
“mock modular form”, not defined in the literature
until nearly a century later, in 2007, by D. Zagier.
Today, the story seems to hail from the distant past,
but its mathematical harvest, its intrigue, has not
let up. For example, the Hardy-Ramanujan story
has been described recently as “one of the most
romantic stories in the history of mathematics”
by Zagier (2007), and decades prior to this, G. N.
Watson describes Ramanujan’s mathematics as
inspiring in him a great “thrill” (1936). Far too
many mathematicians to list, including G. Andrews,
B. Berndt, K. Bringmann, K. Ono, H. Rademacher,
and S. Zwegers, have perpetuated the legacy of
Ramanujan’s mathematics. Ramanujan’s life story
has even been dramatically reinterpreted in the
2007 work of fiction The Indian Clerk by David
Leavitt.

An aspect of the allure to the Hardy-Ramanujan
story is the spawn of a mathematical mystery
surrounding the content of Ramanujan’s deathbed
letter to Hardy, his last. Watson, in his presiden-
tial address to the London Mathematical Society,
prophetically declared the subject of the last letter,
Ramanujan’s “mock theta functions”, to be “the

Amanda Folsom is assistant professor of mathematics at
Yale University. Her email address is amanda.folsom@
yale.edu.
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final problem”. The mathematical visions of Ra-
manujan were telling, particularly the seventeen
peculiar functions of the last letter, which he
dubbed “mock theta functions” and which ap-
peared along with various properties and relations
between them, yet with little to no explanation.
(A handful of other such functions appear in
Ramanujan’s so called “lost notebook”, unearthed
by G. Andrews in 1976, and in work of G. N.
Watson.) Curiously, the “mock theta functions”
were reminiscent of modular forms, which, loosely
speaking, are holomorphic functions on the upper
half complex plane equipped with certain sym-
metries. In fact, Ramanujan used the term “theta
function” to refer to what we call a modular form,
so his choice of terminology “mock theta function”
implies he thought of his functions as “fake™ or
“pseudo” modular forms.

For example, one of Ramanujan’s mock theta
functions is given by f(gq) := >,.0 q”z/(—q;q)f,,
where (a;q), := ]_[;-:5(1 —agq’). Modular forms by
nature are also equipped with g-series expansions,
where g := e?™7 T is the variable in the upper
half complex plane, and Dedekind’s n-function, a
well-known modular form, satisfies g'/**n=1(t) =
>0 am/(q; q)%. These series expansions for f(q)
and g'/?*n~1(T) barely differ. In fact, Ramanujan
observed other analytic properties shared by
his mock theta functions and modular forms,
providing a description of what he calls a “mock
theta function”—and a notoriously vague definition.

Historically, one reason why the mock theta
functions became an object of fascination for so
many lies in the theory of integer partitions. For
any natural number n, a partition of n is defined to
be any nonincreasing sequence of positive integers
whose sum is n. So, for example, there are three
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partitionsof 3:1+ 1+ 1,2 + 1, and 3, and if p(n)
denotes the number of partitions of n, p(3) = 3.
A useful tool for studying p(n), as with many
functions on N, is its “generating function”, which
is of the form P(x) := 1 + >, p(n)x", where x is
a variable. It is not difficult to see by a counting
argument that P(x) = [],.;(1 — x™)~'. Returning
to modular forms, it is also well known that n(t)
has an infinite g-product expansion, and upon
replacing x with g := e>™7 in P(x), one finds the
following relationship between the modular form
n(t) and the partition generating function P(x):
P(q) = q"*/n(T).

Many combinatorial generating functions like
P(x) are related to modular forms with g-infinite
product expansions in similar ways, and having
such relationships often allows one to use the
theory of modular forms to further explain various
aspects of the combinatorial functions. A famous
example of this is the work of Hardy, Ramanujan,
and H. Rademacher, who first used the theory of
modular forms to describe the asymptotic behavior
of p(n) as n — «. The mock theta functions stood
out in that they too seemed to be related to
combinatorial functions. We now know that the
mock theta function f(g), for example, is related
to F. Dyson’s rank-generating function, where the
rank of a partition is equal to its largest part minus
the number of its parts.

By the time of the Ramanujan Centenary Con-
ference in 1987, it had become clear that “the
mock theta functions give us tantalizing hints
of a grand synthesis still to be discovered,” as
Dyson said. “Somehow it should be possible to
build them into a coherent group-theoretical struc-
ture, analogous to the structure of the modular
forms...This,” he said, “remains a challenge for
the future.” Despite the volumes of literature
produced by many famous mathematicians on
the subject since the Hardy-Ramanujan era, the
“what is” remained unanswered for eighty-two
years.

Enter S. Zwegers, a 2002 doctoral student under
D. Zagier, whose thesis finally provided long
awaited explanations, one being: while the mock
theta functions were indeed not modular, they could
be “completed” (after multiplying by a suitable
power of g) by adding a certain nonholomorphic
component, and then packaged together to produce
real analytic vector valued functions that exhibit
appropriate modular behavior. This one-sentence
description does not do justice to the scope of
Zwegers’s results, which are much broader and
also realize the mock theta functions within other
contexts.

Zwegers’s breakthrough didn’t simply put an
end to the mystery surrounding the mock theta
functions; it (fortunately) opened the door to many
more unanswered questions! Notably, K. Bring-
mann, K. Ono, and collaborators developed an
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overarching theory of “weak Maass forms" (see the
work of J. Bruinier and J. Funke for a debut ap-
pearance in the literature), a space of functions to
which we now understand the mock theta functions
belong. Weak Maass forms are nonholomorphic
modular forms that are also eigenfunctions of a
certain differential (Laplacian) operator. (For the
reader familiar with usual Maass forms or the
more modern “Langlands program”, while there is
a small intersection with the theory of weak Maass
forms, the theories are distinct in that the required
growth condition on weak Maass forms is relaxed,
for example, hence the descriptor “weak”.)

How do the mock theta functions fit into this
framework of weak Maass forms and lead to the
answer to the question “what is a mock modular
form”? As alluded to above, to associate modular
behavior to a given mock theta function m(q),
one first needs to 1) define a suitable multiple
h(g) := g™m(q) for some M € Q, and 2) add
to h(g) an appropriate nonholomorphic function
g* (1), constructed from a modular theta series
g(T), dubbed the shadow of h (after Zagier).
The final object E(T) := h(q) + g*(7) is then a
nonholomorphic modular form. (Implicit here is
that one must also replace g by e?™7, T € H, in the
function h(qg).) Thus, one gains modularity at the
expense of holomorphicity: h(g) is holomorphic
but not modular, while E(T) is modular bAut not
holomorphic. In particular, the function h(t) is
a weak Maass form, whose holomorphic part is
essentially the mock theta function m(qg).

Loosely speaking then, a “mock modular form”
is a holomorphic part of a weak Maass form. One
particularly beautiful example of a mock modular
form due to Zagier is the generating function for
Hurwitz class numbers of algebraic number theory,
whose completion (associated weak Maass form) is
the so-called Zagier-Eisenstein series, and whose
shadow is given by the classical modular theta
function 3,., g"".

The ability to realize the mock theta functions
within the theory of weak Maass forms has led to
many important discoveries. One notable example
towards Dyson’s “challenge for the future” within
partition theory is due to Bringmann and Ono, who
show that generalized rank-generating functions
(which include the mock theta function f(g) as a
special case) are mock modular forms. Their work
not only led to deeper results in the theory of
partitions by making use of the theory of weak
Maass forms but also exhibited a new perspective
on the roles played by modular forms in both
theories.

To grasp a more precise formulation of mock
modular forms, note that functions exhibiting
modular behavior (said to satisfy modular “trans-
formations”) come equipped with an integer or

VOLUME 57, NUMBER 11



half-integer “weight” k. One has two clear formula-
tions of the space M, of weight k mock modular
forms due to Zagier. First, consider the space 20,
of real analytic functions that exhibit a modular
transformation of weight k and satisfy suitable
growth conditions. Understanding the roles played
by the shadows g, and also the differential Lapla-
cian operator, leads to the fact that the space
My := {F € Y0« | 9:(y*3+F) = 0} not only con-
sists of weight k weak Maass forms (with special
eigenvalue %(1 - g)) but is also isomorphic to the
space of mock modular forms My of weight k by
mapping h € M with shadow g to its completion
h=h+ g* e @k. Second, one may also realize My

via the exact sequence 0 — M,!< — Mg 3, M, — 0,
where M,  is the space of holomorphic modu-
lar forms of weight 2 — k, M} is the space of
weakly holomorphic modular forms of weight k
(allowing additional poles at points called cusps)
and S (h) := g for the mock modular form h with
shadow g. While this definition as stated is arguably
the most natural, it may be of interest to consider
other generalizations, some of which are currently
being explored.

The tale of mock theta functions, mock mod-
ular forms, and weak Maass forms, while rooted
in analytic number theory, has bled into many
other areas of mathematics: sometimes mock
modular forms are combinatorial generating func-
tions, sometimes they answer questions about the
nonvanishing of L-functions, sometimes they are
related to class numbers, sometimes they are char-
acters for affine Lie superalgebras, and sometimes
they tell us about topological invariants—to name
just a few of their many roles. Watson was right:
“Ramanujan’s discovery of the mock theta functions
makes it obvious that his skill and ingenuity did
not desert him at the oncoming of his untimely
end. As much as any of his earlier work, the mock
theta functions are an achievement sufficient to
cause his name to be held in lasting remembrance.
To his students such discoveries will be a source
of delight and wonder....”

What is next?
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a clear vision of the future needs of undergraduate and
graduate education. He or she will have an established
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The successful candidate will wish to bridge traditional
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Chair Search Advisory Committee, 2527A Space
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needs of dual career couples.
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Ky Fan passed away on
March 22, 2010, at the age
of ninety-five in Santa Bar-
bara, California. He was born
in Hangzhou, China, on Sep-
tember 19, 1914. He enrolled
in National Peking Univer-
sity in 1932. Despite an
interest in engineering, he
pursued studies in mathe-
matics due in part to the
influence of his uncle, Zuxun
Feng, who was chair of the
Department of Mathematics
at Peking University. As a
junior in college, Fan was in-
spired by a visit of E. Sperner
and translated into Chinese
the book by O. Schreier and E. Sperner, Ein-
ftihrung in die Analytische Geometrie und Algebra.
This translation, published in 1935 with the ti-
tle Analytical Geometry and Algebra I, II, became a
standard textbook in China. In fact,in 1953, almost
twenty years after its initial publication, I used the
same text as an undergraduate at National Taiwan
University for a course on advanced geometry.
This book so inspired me that I sought to join Fan
at the University of Notre Dame to pursue a Ph.D.
in mathematics. By the time Fan graduated from
Peking University in 1936, he had also translated
a book of Landau on number theory and ideal
theory and had coauthored with a colleague a
book on number theory. He was an instructor at
Peking University in 1936-1939. In 1939 he was
selected by the China-France Education Founda-
tion to receive a Boxer Scholarship. This national

Ky Fan

Bor-Luh Lin is professor of mathematics at the University
of Iowa. His email address is b11in@math.uiowa.edu.

NOTICES OF THE AMS

competition provided one student with a chance to
pursue a degree in mathematics in Europe. Work-
ing with Maurice Fréchet, he received his D.Sci.
from the University of Paris in just two years, with
a thesis with the title Sur quelques notions fonda-
mentales de I'analyse générale. He was a French
National Science Fellow at Centre National de la
Recherche Scientifique in 1941-1942 and a mem-
ber of the Institut Henri Poincaré in 1942-1945.
By 1945 he had already published twenty-five pa-
pers on abstract analysis and topology, including
the monograph Introduction a la topologie combi-
natorire, 1. Initiation (Vubert, Paris), written with
M. Fréchet.

Fan was at the Institute for Advanced Study
at Princeton in 1945-1947. As an assistant of
John von Neumann, and inspired by H. Weyl,
he developed an interest in operator theory,
matrix theory, minimax theory, and game the-
ory. Later he extended his interests to systems
of inequalities and fixed point theory. At that
time many in these fields were studying finite
games and optimizations in finite-dimensional
spaces. Fan, however, pioneered the fields of infi-
nite games and inequalities in infinite-dimensional
linear spaces. He made fundamental and ground-
breaking contributions and continued to be a
leader in these areas throughout his career. He
also made major contributions to the geometry
of Banach spaces, convex analysis, combinato-
rial topology, topological groups, and analytical
function theory.

Fan taught at the University of Notre Dame
from 1947 to 1960. For many summers dur-
ing this period, he was at the National Bureau
of Standards, Oak Ridge National Laboratory,
and Argonne National Laboratory. He taught at
Wayne State University (1960-1961), Northwest-
ern University (1961-1965), and the University of
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California at Santa Barbara starting in 1965. Upon
his retirement from UC Santa Barbara in 1985, an
international symposium was held to celebrate his
many contributions to mathematics. The sympo-
sium resulted in the publication of a monograph
with the title Nonlinear and Convex Analysis: Pro-
ceedings In Honor of Ky Fan (Lecture Notes in Pure
and Applied Mathematics, Dekker, 107(1987)). He
was chair of the Department of Mathematics at UC
Santa Barbara in 1968-1969. He held visiting posi-
tions at the University of Texas-Austin, Universitat
Hamburg, the Université Paris IX, and Universita
degli Studi di Perugia. He was elected a member of
Academia Sinica in 1964 and served as the director
of the Institute of Mathematics at the Academia
Sinica from 1978-1984. Two issues of the Bulletin
of the Institute of Mathematics, Academia Sinica—
V. 2, No. 2, 1974, and V. 3, No. 1, 1975—were
dedicated to him for his sixtieth birthday. In 1989
he was a Distinguished Visiting Scholar at the
Chinese University in Hong Kong and received an
Honorary Professorship from Peking University.
After the visit, he donated his whole collection
of mathematics books and treatises to Peking
University. In 1990 he was awarded the degree
Docteur Honoris Causa from the Université de
Paris-Dauphine and was the featured speaker at
the Conference on Directions in Matrix Theory
(Fourth Auburn Linear Algebra Conference). His
lecture at the Auburn conference, his publication
lists up to 1992, a brief bibliography, and a list of
his Ph.D. students appeared in Linear Algebra and
its Applications 162-164:1-2(1992), 1-22. In 1993
the T.L.Tec/K.E.S. Conference on Nonlinear and
Convex Analysis in Tokyo was dedicated to Fan
in recognition of his fundamental contributions
to the field. In 2011 the seventh International
Conference on Nonlinear and Convex Analysis in
Hirosaki will be dedicated to his memory. In 1994
an entire issue of Topological Methods in Nonlinear
Analysis was dedicated to him for his eightieth
birthday. He served on many editorial boards. He
was a distinguished editor of Linear Algebra and
its Applications, and he was one of the founding
editors of the Journal of Mathematical Analysis
and Applications and the Journal of Nonlinear and
Convex Analysis. The latter will publish a special
issue in memory of Fan.

In 1999 Ky Fan and his wife, Yu-Fen Fan, made
a gift of approximately US$1 million to the Amer-
ican Mathematical Society. The fund was used to
establish the Ky and Yu-Fen Fan Endowment to
support and to foster collaborations between Chi-
nese mathematicians and mathematicians in other
parts of the world, especially North America, and
to support mathematically talented high school
students in the United States. The AMS uses the
fund from the Fan Endowment to fund the China
Exchange Program, which provides grants to Chi-
nese mathematics departments to bring visitors
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from the rest of the world, as well as grants to
North American departments to bring in visitors
from China. The program also supports occa-
sional conferences in China and improvement of
library holdings in Chinese institutions. The Fan
Endowment has also provided grants to assist
programs in the United States that nurture math-
ematically talented high school students and has
supported the Ky and Yu-Fen Fan Scholarships
within the AMS Epsilon Scholarships Program for
high school students. As noted by AMS past presi-
dent Felix Browder, “The impact of Ky and Yu-Fen’s
generosity will be felt for years to come.”

Fan published about 130 pa-
pers, many of which made
fundamental contributions to
several fields in pure and ap-
plied mathematics. From the
famed Ky Fan inequalities
(1951) to the Fan condition
(1956), to the Ky Fan minimax
inequality (1972) his papers
shaped the fields of linear and
nonlinear functional analysis,
linear algebra, convex anal-
ysis, and optimization. Fan
had a knack for identifying
the central problems in a
field of study and present-
ing them in the most general
concise statements, with new
approaches and elegant proofs.
He brought seeming unrelated
areas together to create new
mathematics. As a result, his papers were often
cited and pointed to new research directions. His
contributions concerning fixed points and min-
imax inequalities have had a major impact in
the development of nonlinear functional analy-
sis. He made significant contributions to locations
and identified maximum eigenvalues of matrices.
His works found wide applications to mathemat-
ical economics, differential equations, potential
theory, and numerical analysis. His research
demonstrated the beauty of combining pure and
applied mathematics. There are a large number
of theorems, lemmas, inequalities, equalities, con-
ditions, norms, etc., that bear the name of Ky
Fan. The bibliography lists some major reference
books that contain many of his contributions. We
now briefly discuss the Ky Fan inequality, the Fan
condition, and the Ky Fan minimax inequality.

Ky Fan Minimax Inequality (K. FAN, A minimax
inequality and applications, Inequalities III, Proc. of
the Third Symposium on Inequalities, Acad. Press
(1972), 103-113).

Let X be a nonempty compact convex set
in a Hausdorff topological vector space E.

Ky Fan, China,
1939.
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Suppose f is areal-valued function defined
on X x X such that:
(a) For each fixed x in X, f(x,y) is a
lower semicontinuous function of y
on X,
(b) For each fixed y in X, f(x,y) is a
quasi-concave function of x on X.
Then the minimax inequality

mlnmaxf(x y) < supf(x,x)
xeX XeX

holds.

Applications of this inequality to fixed points,
differential equations, and potential theory were
given in the paper. It was later found to be equiva-
lent to the Brouwer fixed point theorem but much
more powerful and easier to use. Many important
equilibrium theorems in mathematical economics
follow quickly from the Ky Fan inequality.

Ky Fan Inequality (K. FAN, Maximum properties
and inequalities for the eigenvalues of completely
continuous operators, Proc. Natl. Acad. Sci. USA,
37 (1951), 760-766).

LetA;,Ay,...,A,,bem (m = 1) completely con-
tinuous operators in Hilbert space H. For each
J=12,...,mlet Aj;,Ajs,...,Ajj,...be the eigen-
values of AjA;. Then for every positive integer
n:

n
max Z (U1A; - UnAmXi, X;)
) —
z (/\11/\21 st Ami) y
i=1
max 1det (U1 Ay - - - UnAmXi, Xk) ‘
<ik<n

=[T@udz -+ Am),
i=1

where, for both maxima, U, U,,...,U, inde-
pendently run over all unitary operators and
{X1,X2,...,Xn,} Tuns over all n orthonormal
elements in H.

Let A, B be completely continuous operators in
Hilbert space H. If {A;}, {k;}, and {o;} are the
eigenvalues of A*A, B*B, and (A+B)* (A+B)
respectively, then

® (V01,1/02,...,\/0n)

sq>(@,@,...,@)

+® (\/K1, /K2,y /Kn)

holds for every symmetric gauge function ® of any
number n variables.

These inequalities generalized inequalities of
von Neumann and Weyl and were listed by
J. Dieudonné in A Panorama of Pure Mathemat-
ics, as seen by N. Bourbaki, Acad. Press (1982) as a
major contribution to operator theory.
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Fan Condition (K. FAN, On systems of linear in-
equalities, linear inequalities and related systems,
Annals of Math. Studies, Princeton Univ. Press, vol.
38 (1956), 99-156).

Let X be a real linear space. For any linear
functionals f;,i = 1,2,...,n, and real numbers
c¢,i = 1,2,...,n, there exists x € X such that
fi(x) =c¢,i=1,2,...,n,if and only if for any non-
negative numbers a;,i = 1,2,...,n, the relation
>, aifi = 0 implies >, a;c; < 0.

The Fan condition has many applications and
is a fundamental result in linear programming.
The following is a nonlinear version of the Fan
condition and is one of the major tools in nonlinear
programming and convex analysis. It appeared
in the paper “Systems of inequalities involving
convex functions”, by K. Fan, I. Glicksberg, and
A. ]J. Hoffman, Proc. Amer. Math. Soc. 8 (1957),
617-622.

Let K be a nonempty convex set in a real
vector space X. Let fi: K — R,i = 1,2,...,n, be
convex functions. Then f; (x) < 0,i = 1,2,...,n,
has a solution x € K if and only if there exist real
numbers A; > 0,i =1,2,...,n, not all zero, such
that 37", A;fi (x) = O for all x € K.

Although Fan’s contributions to mathematics
are undisputed, I can think of no better way to
honor his memory than to describe his role as a
mentor and adviser. Fan was widely known to be a
very rigorous teacher, one who expected the best
of his students. Over his career, Fan had twenty-
two Ph.D. students. When he left Notre Dame in
1960, John C. Cantwell, Ronald J. Knill, Robert
E. Mullins, John O. Riedl Jr., and I followed him
to Northwestern to complete our Ph.D. theses.
The five of us were given thesis topics in five
completely different areas. These areas were so
diverse that we found no common ground among
us to discuss the individual problems, and they
were chosen so that none of the topics were closely
related to any of Fan’s published papers. He had
decided the best way to train us was by pushing
us to develop our own research directions rather
than simply follow in his footsteps.

His style of teaching was unique, if occasionally
intimidating. In his courses, we were given long
lists of references to study. These references were
in English, French, German, or Russian. The book
of exercises he compiled to accompany these
references was equally daunting. The content of
his courses was usually about double that of a
typical course. But, as with everything Fan did,
the courses were beautifully organized. I still
remember his lectures. He would start at the far
corner of the blackboard and gradually cover the
entire blackboard as the class went on. His lecture
would always finish in the far right corner of the
blackboard as class ended.

He demanded nothing less than complete ded-
ication from his students. He considered his
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lectures to be performances and demanded the
students’ total attention. Those who neglected to
take notes would be the first to be called upon in
class, and he was not shy about letting the entire
class know if any answer was stupid or irrelevant.
It was not long before all of the students were
assiduously taking notes and preparing answers
to the many possible questions that could come
at any moment.

He demanded that his graduate students think
about mathematics all the time. In 1975 graduate
students at UC Santa Barbara surprised him on his
sixtieth birthday with a T-shirt imprinted with his
photo, surrounding which, in large black letters,
were the words, “EVERY WAKING MOMENT”. Fan,
of course, was smiling in the middle.

Dennis Wildfogel, a Ph.D. student of Fan at UC
Santa Barbara in 1974, provides a story about Fan:
“As many people know, Dr. Fan’s doctoral adviser
was the noted mathematician Maurice Fréchet,
and Fréchet’s adviser was the even more famous
Jacques Hadamard. Fréchet died while I was work-
ing on my thesis. Shortly thereafter, someone
pointed out to Fan that Hadamard had lived until
age ninety-seven, Fréchet until ninety-four, and
concluded that Fan would live to be ninety-one.
Now, for most people in their late fifties (as Dr.
Fan was at that time), being told you will live until
age ninety-one would be good news. But Dr. Fan
resented any limitation on his opportunity to do
mathematics, so he replied testily, ‘How do you
know it’s a straight line?!? Maybe it is a parabola.”
For additional stories on Fan’s teaching and men-
toring, see the blog|drfantales.blogspot.com,
created by Wildfogel.

As a mathematician and teacher, he expected
perfection and total devotion. As a mentor and
as a person, he was a traditional Chinese scholar;
unfailingly kind, courteous, generous, and humble.
He went out of his way to help his students or
anyone who was interested in mathematics. Even
when he was in a wheelchair in the later part
of his life, he would still respond to my letters
with advice and encouragement. Any news I or
other students had on progress in our studies in
mathematics would make him happy. In 1994 he
sent me a preprint of a paper to be published
in Proceedings of AMS, with a note that this was
his way of celebrating his eightieth birthday. He
lived the way he taught his students: EVERY
WAKING MOMENT was spent thinking about and
working on mathematics. His love and dedication
to mathematics continue to be a model for all
of us, and his impact will be felt on the field of
mathematics for generations to come.
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T-shirt from graduate students, UC Santa
Barbara, 1975.
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When you admit to a stranger on an airplane
that you are a professional mathematician, what
happens next? “I never liked mathematics.” “I'm
no good with numbers.” “I used to be good at
math until I got to calculus.” “Isn’t math boring?”
“What do you guys actually do all day?” Why not
take such a response as an invitation to pull out
a scratchpad and do a little teaching? One of my
favorite topics is Euler’s polyhedral formula: it is
simple and elegant, it is not just about arithmetic
or calculus, and it requires hardly any technical
background to understand. Even strangers on
airplanes are capable of looking at five or six
examples, conjecturing that V — E + F = 2 for all
polyhedra, and asking good questions: “But how
can you prove that it’s always true?” “Does it work
if the polyhedron has a hole in it?” Admittedly,
the scene doesn’t always end this happily, but we
mathematicians need to be able to communicate
our discipline to strangers on airplanes, not to
mention prospective students, deans, members of
Congress, and small children.

David Richeson’s Euler’s Gem does an out-
standing job of explaining serious mathematics to
a general audience, and I plan to recommend it to
the next stranger I meet on an airplane. The book
is structured as a “tour guide” to the history of
geometry and topology, revolving around Euler’s
formula and organized roughly chronologically:
from the study of polyhedra in ancient Greek

Jeremy L. Martin is associate professor of mathemat-
ics at the University of Kansas. His email address is
jmartin@math.ku.edu.
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Reviewed by Jeremy L. Martin

geometry to the discovery, proofs, and general-
izations of Euler’s formula in the seventeenth,
eighteenth, and nineteenth centuries, to such di-
verse modern topics as knot theory, fixed-point
theorems, curvature, the classification of surfaces,
homology theory, and the Poincaré conjecture. The
book is primarily intended for a lay audience, but
there is also much of interest to professional
mathematics students, teachers, and researchers.
While a few of the book’s generalizations about
mathematical history and aesthetics are a bit sim-
plistic or even one-sided, the wealth of clear and
engaging exposition outweighs these occasional
flaws.

The historical development of geometry, from
its Greek roots to its modern form, is a re-
curring theme. An example is the discussion
of the attempts of Lhuilier and others, in the
early nineteenth century, to generalize Euler’s for-
mula to nonconvex polyhedra. Lhuilier’s approach,
incorporating contributions for the number of
“tunnels”, “cavities”, and “inner polygons” (Riche-
son’s terms), as well as vertices, edges, and faces,
might seem a little misguided with the benefit of
hindsight; wouldn’t it be easier to phrase every-
thing in terms of cell complexes and homology?
Yes, it would, but in 1810 no one knew what a
cell complex (or for that matter a manifold) was.
The reader can see the origins of these modern
ideas by comparing Lhuilier’s work with that of
Listing (whose “spatial complexes” Richeson de-
scribes briefly on pp. 249-250) and finally modern
topology as developed by Poincaré. Even an expert
should be able to benefit from seeing the evolu-
tion of “standard” mathematical definitions from
simple and intuitive to complex and precise; this
evolution is something not found in most graduate
courses or textbooks.

Some of the generalizations about mathematics
history may be oversimplifications: for instance,
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“Euler’s predecessors were so focused on metric
properties that they missed this fundamental in-
terdependence. Not only did it not occur to them
that they should count the features on a poly-
hedron, they did not even know which features
to count” (p. 85). Kepler and Descartes did in
fact count pieces of polyhedra, and their work
is described elsewhere in the book. Kepler had
observed the phenomenon of polar duality for
regular solids and the fact that dualizing reverses
the ordered triple (V,E,F), what a modern com-
binatorialist would call the f-vector. Meanwhile, a
century before Euler, Descartes had observed! a
formula closely related to Euler’s: P = 2F + 2V — 4,
where P is the number of plane angles. Each angle
contains two edges, and each edge belongs to four
angles (two on each end), so P = 2E, implying
Euler’s formula. Whether or not you think that
Descartes deserves equal naming rights with Euler
(a topic that has been debated), it seems clear that
Kepler and Descartes were at least counting some-
thing. No doubt Euler’s work was a major turning
point and had far more direct impact than that of
Descartes, but it is an overstatement to claim that
Euler was the first to realize the applicability of
counting in geometry. (On the other hand, Euler’s
original proof was indeed, as Richeson says, “a pre-
cursor to modern combinatorial proofs” (p. 67):
calculate V — E + F for a given polyhedron by
slicing off a tetrahedron at a time and total the
contributions from the individual tetrahedra. For
those, like me, who think of Euler’s formula as
completely combinatorial, it is interesting to learn
that the first rigorous proof, due to Legendre, is
fundamentally geometric: project the polyhedron
onto a sphere and then apply the Harriot-Girard
theorem, which says that the area of a geodesic
triangle on the unit sphere equals its angle sum
minus 1r.)

The big historical picture may be slightly fuzzy,
but the exposition of substantial mathematics is
uniformly clear and concrete, with lots of pictures
and examples, and sensibly organized. Several
of the chapters stand on their own and would
work well as self-contained reading assignments
in a geometry course for mathematics majors or
future secondary-school teachers. For example,
the description of the classification of surfaces
by their Euler characteristics and orientability
(Chapters 16-17) is an absorbing, self-contained
mathematical story, told at an appropriate level of
technicality, in which terms such as “isomorphism
invariant” and “orientable” receive clear, simple
definitions that avoid unnecessary technicalities,
without sacrificing accuracy. The theme of intrinsic
versus extrinsic geometry (what properties of a

'm a set of papers lost in a shipwreck after
Descartes’ death and not brought to public light until
1860—Richeson provides the juicy details in Chapter 9.
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curve or surface depend on how it is embedded in
space?) is given the attention it deserves, leading
into a chapter on the lovely subject of knot theory,
with lots of pictures and explanations that make
substantial mathematics (like the Seifert surface,
an orientable surface in R3 having a given knot
as boundary) appealing and fun. If your seatmate
complains that geometry is boring, here is an
antidote.

Further geometry topics that receive excellent
treatment include Descartes’ theorem on solid
angles of polyhedra and its continuous analogue,
the Gauss-Bonnet theorem, which measures the
total curvature of a surface in terms of its Euler
characteristic. The presentation is clear and self-
contained, requiring little more background than
the fact that the sum of angles in an n-sided
polygon is (n — 2)mm—hardly too much to ask.
The explanation of curvature is concrete; wisely,
the calculus details are banished to footnotes.
(My one small complaint: the biographical sketch
of Gauss somewhat breaks up the flow of the
mathematical story.) Richeson’s explanation of
homology (Chapter 23) was one of my favorite
parts of the book, and I wish I had read it before
taking algebraic topology as a graduate student—
all those long exact sequences would have made
a lot more sense if T had known what they were
trying to measure.

Unfortunately, this outstanding section is fol-
lowed by a mistaken explanation: “Kepler’s ob-
servation [polar duality] is Poincaré duality in
disguise. We are free to exchange the roles of
i-dimensional and (n — i)-dimensional simplices.”
The intent is good, but the details are inaccu-
rate: the f-vectors of two polar dual polytopes
are the reverses of each other, whereas Poincaré
duality says (among other things) that the Betti
numbers of a single manifold form a palindrome.
Although both statements are superficially con-
cerned with symmetry, they are hardly the same
thing in disguise. I cannot resist inserting a plug
for combinatorics here: I would have liked to
see a section about another relevant (and quite
beautiful) duality for polytopes, namely the Dehn-
Sommerville equations. Briefly, the f-vector of a
simplicial polytope can be transformed into an-
other invariant called the h-vector (for example,
an octahedron has f-vector (6,12, 8) and h-vector
(1,3,3,1)), which carries the same information;
the Dehn-Sommerville equations say that the
h-vector is a palindrome. After describing ho-
mology and Poincaré duality, it would have been
a natural next step to define the h-vector, to state
the Dehn-Sommerville equations with an example
or two, and perhaps to sketch the beautiful geo-
metric proof by Bruggesser and Mani [1]. Perhaps
this is something to look forward to in the second
edition.
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I was disappointed by the book’s discussion of
the use of computers in mathematics, particularly
Appel and Haken’s 1976 proof of the four-color
theorem (the first solution of amajor open problem
that relied on a computer to check a large finite
number of cases):

Although most people came to

believe that [Appel and Haken's]

proofwas correct, most pure math-

ematicians found the proof inele-

gant, unsatisfying, and unsporting.

It was as if Evel Knievel boasted

that he could cross the Grand

Canyon on his motorcycle, only

to build a bridge and use it to

make the crossing. Perhaps it is

how mountain climbing purists

feelabout the use of bottled oxygen

in high-altitude climbing. (p. 143)
This is unnecessarily dismissive and it neglects to
present the other point of view: that Appel and
Haken'’s work did us all a big favor by introducing
a powerful new tool in doing mathematics and that
whether it is “sporting” is a moot point, because
mathematics is the richer for having any proof
at all of the four-color theorem. The passage also
pays scant attention to the fact that computer-
aided proofs are much more widely accepted in the
mathematical community today than they were in
1976. Later on the same page, we read,

Perhaps some day someone will
create a black box that proves the-
orems.... Some would say that this
would take the fun out of mathe-
matics and make it less beautiful.

Yet some would say the reverse: computers can
help us discover and create beauty. Consider
the development of automated summation tech-
niques; they may take some of the fun out of
proving hypergeometric identities, but being able
to delegate such tasks to a computer frees up
lots of mathematician-hours to do other things
that a machine can’t do. In addition, the mathe-
matics underlying hypergeometric summation is
itself quite beautiful, and it’s hard to imagine any
hypothetical black box being built without much
more complex and beautiful mathematics (as a
starting point, see the articles on formal proof in
the October 2008 issue of the Notices). Describing
the artistic and aesthetic sides of mathematics is
a noble goal, but I am concerned that the quoted
passages are counterproductive. We should por-
tray ourselves not as purists who disdain the use
of nontraditional tools but as scientists who are
willing to be open to new methods.

It is easier to criticize a problematic sentence
than to praise an entire well-written chapter. Over-
all, I found much more to like than to criticize
in Euler’s Gem. At its best, the book succeeds at
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showing the reader a lot of attractive mathematics
with a well-chosen level of technical detail. I rec-
ommend it both to professional mathematicians
and to their seatmates.
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What Does the Free Will
Theorem Actually Prove?

Sheldon Goldstein, Daniel V. Tausk, Roderich Tumulka,
and Nino Zanghi

Conway and Kochen have presented a “free will the-
orem” [4, 6] which they claim shows that “if indeed
we humans have free will, then [so do] elementary
particles.” In a more precise fashion, they claim
it shows that for certain quantum experiments in
which the experimenters can choose between sev-
eral options, no deterministic or stochastic model
can account for the observed outcomes without
violating a condition “MIN” motivated by relativis-
tic symmetry. We point out that for stochastic
models this conclusion is not correct, while for
deterministic models it is not new.

In the way the free will theorem is formulated
and proved, it only concerns deterministic models.
But Conway and Kochen have argued [4, 5, 6, 7] that
“randomness can’t help,” meaning that stochastic
models are excluded as well if we insist on the
conditions “SPIN”, “TWIN”, and “MIN”. We point
out a mistake in their argument. Namely, the
theorem is of the form

(1) deterministic model with SPIN & TWIN & MIN
= contradiction,

and in order to derive the further claim, which is
of the form

(2) stochastic model with SPIN & TWIN & MIN
= contradiction,
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Conway and Kochen propose a method for con-

verting any stochastic model into a deterministic

one [4]:
let the stochastic element...be a sequence of
random numbers (not all of which need be
used by both particles). Although these might
only be generated as needed, it will plainly
make no difference to let them be given in
advance. [emphasis added]

In this way, (2) would be a corollary of (1) if the
conversion preserved the properties SPIN, TWIN,
and MIN. However, Conway and Kochen have ne-
glected to check whether they are preserved, and
indeed, as we will show, the conversion preserves
only SPIN and TWIN but not MIN. We do so by
exhibiting a simple example of a stochastic model
satisfying SPIN, TWIN, and MIN. As a consequence,
no method of conversion of stochastic models into
deterministic ones can preserve SPIN, TWIN, and
MIN. More directly, our example shows that (2)
is false. Contrary to the emphasized part of the
above quotation, letting the randomness be given
in advance makes a big difference for the purpose
at hand.

Therelevant details are as follows. The reasoning
concerns a certain experiment in which, after a
preparation procedure, two experimenters (A and
B), located in space-time regions that are spacelike
separated, can each choose between several options
for running the experiment. We denote by a (resp.,
by b) the choice of A (resp., of B) and by O4
(resp., Op) the outcome of A (resp., of B). The data
collected from this experiment can be represented
by a joint probability distribution Pg(04, Op) for
the outcomes (O4, Op) that depends on the choices
(a,b). Experimenter A chooses a = (x,y,z) from
a certain set of forty orthonormal bases of R3, B
chooses b = w from a certain set of thirty-three
unit vectors in R3. SPIN asserts that the outcome
O, obtained by A is always one of the triples
110, 101, or 011, and the outcome Op obtained
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by B is either O or 1. TWIN asserts that whenever
w = X (resp., w = y/w = z), Op coincides with
the first (resp., second/third) digit of O4. Quantum
mechanics predicts data Pg(04,Op) that satisfy
SPIN and TWIN, given explicitly in Table 1.

Pss | Op =0 Op=1
04=011| 3(w-x)> 3[1-(w-x)?]
04=101 [ 3(w-»)? 3[1—(w-y)?]
04=110 | 3(w-2)%> 3[1-(w-2)?]

Table 1. Joint probability distribution of
outcomes as predicted by quantum mechanics,
with - denoting the scalar product of vectors
in R3,

A Sstochastic model for the data Pu(0O4,Op)
means, for the purpose at hand, a probability
measure P* (that does not depend on a and b) on
some measurable space A and, for each A € A and
a and b, a probability measure Pu;(O4, Op|A) on the
set {110,101,011} x {0,1} of possible outcomes
such that, when A is averaged over with P*, the
data Pg(04, Op) are obtained:

(3)  Pu(Oa,0p) = L Pas(O1, 051A) AP ().

A deterministic model for the data Pg (04, Op) is a
stochastic model such that each Pg (04, OglA) is
supported by a single outcome, i.e., one for which
there are functions 64 and 63 such that:

(4) Pg(O04s = 0a(a,b,A), Op = Op(a,b,A)[A) =1,

for all @, b, and A.
The MIN condition is formulated in a somewhat
vague way [6]:

The MIN Axiom: Assume that the experi-
ments performed by A and B are spacelike
separated. Then experimenter B can freely
choose any one of the thirty-three partic-
ular directions w, and [0O4] is independent
of this choice. Similarly and independently,
A can freely choose any one of the forty
triples x, y, z, and [Og] is independent of that
choice.!

What does MIN mean for a deterministic model?
According to Conway and Kochen [6]:

It is possible to give a more precise form of
MIN by replacing the phrase “[Og] is indepen-
dent of A’s choice” by “if [04] is determined
by B’s choice, then its value does not vary
with that choice.”

'Here and in the following quotation, we have adapted

the notation by putting [O 4] for “a’s response” and [Og]
for “b’s response”.

NOTICES OF THE AMS

That is, MIN asserts that the function 64 does not
depend on b and the function 03 does not depend
on a:

(5) 0a(a,b,A) = O0a(a,A), Op(a,b,A) =05(b,A).

What does MIN mean for a stochastic model?
Conway and Kochen do not say precisely, as the
above quotation deals only with the case of a
deterministic model (“if [0 4] is determined by B’s
choice”), but the most reasonable interpretation
is a condition known as parameter independence
[11, 12]: for any given A, the distribution of O o does
not depend on b, and the distribution of Op does not
depend on a:

(6)

Pas(OalA) = Pa(OalA), Pes(OplA) = Ps(Op|A).

Note that for deterministic models (6) is the same
as (5).

An example of a stochastic model satisfy-
ing SPIN, TWIN, and MIN (understood as (6)) is
obtained from “rGRWf”, the relativistic Ghirardi-
Rimini-Weber theory with flash ontology [14, 15],
but much simpler examples are possible. As a
second example, one may simply take (A, P}) to
be the trivial probability space containing just one
element (so that A is a constant and can be ignored).
Then, according to the definition of stochastic mod-
els, the data themselves form a stochastic model.
That is, take Pg(04, OplA) = Pas(04, 0p) as given
by Table 1. We know that this stochastic model sat-
isfies SPIN and TWIN, and it also satisfies (6), since,
for all ¢ and b, the marginal distribution of O, is
uniform and the marginal distribution of Op gives
probability 1/3 to 0 and 2/3 to 1. As a third (and
even simpler) example, let us drop the requirement
(3) that the stochastic model agrees with the data
predicted by quantum mechanics and focus just on
satisfying SPIN, TWIN, and MIN. Take (A, P}) to be
trivial as before. If b = w coincides with coordinate
X (resp., y/z) of a, then let Py5(O4, Og|A) give prob-
ability 1/3 to each of (110,1), (101,1), (011,0)
(resp., toeach of (110,1), (101,0), (011,1)/to each
of (110,0), (101,1), (011,1)) and probability zero
to the other three possible values of (Oy4, Op). If w
coincides withnone of x, v, z, thenlet Pg (04, Op|A)
give probability 1/9 to each of (110,0), (101,0),
(011,0) and probability 2/9 to each of (110,1),
(101,1), (011,1). Then SPIN and TWIN are obvi-
ously true, and (6) is true because the marginal
distributions of O, and Og are the same as in the
previous example.

Toillustrate explicitly why (6) breaks down when
putting all randomness in the past, let us consider
a specific conversion method of stochastic models
into deterministic ones that Conway and Kochen
have proposed [6] in response to earlier criticisms
of their claims concerning the viability of rGRWf
[15]:
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we can easily deal with the dependence of
the distribution of flashes on the external
fields F4 [= a] and Fg [= b], which arise from
the two experimenters’ choices of directions
Xx,y,z, and w. There are 40 x 33 = 1320
possible fields in question. For each such
choice, we have a distribution X (Fy4, Fg) of
flashes, i.e., we have different distributions
X1, Xo,...,X1320. Let us be given “in advance”
all such random sequences, with their differ-
ent weightings as determined by the different
fields. Note that for this to be given, nature
does not have to know in advance the ac-
tual free choices F4 (i.e., x,y,z) and F3 (i.e.,
w) of the experimenters. Once the choices
are made, nature need only refer to the rel-
evant random sequence Xy in order to emit
the flashes in accord with rGRWT. [emphasis
added]

The problem here is that the deterministic model
obtained from this method of conversion man-
ifestly violates MIN, because if nature were to
follow the recipe suggested in the emphasized part
of the quotation above, then she would have to use
the value of k = k(x,y,z,w) depending on both
experimenters’ choices, a = (x,y,z), and b = w, in
order to produce any of the outcomes O4, Og.
The conclusion that there are some predictions
of quantum theory that cannot be obtained by a
deterministic model satisfying parameter indepen-
dence is not new. As noted by Jarrett in 1984 [11],
for a stochastic model Bell’s locality condition [1, 2]

(7) Pas(Oa, OplA) = Pa(OalA) Ps(Op|A)

is (straightforwardly) equivalent to the conjunc-
tion of parameter independence (6) and another
condition known as outcome independence,

Pas(O04l0g,A) = Pg(O4lA),
Pas (010, A) = P (Op|A).

For a deterministic model, (8) is always trivially sat-
isfied, as the distributions Pu; (0 4]A) and Py(Op|A)
each assign probability 1 to a single outcome, so any
further information (such as the other outcome)
is redundant. Thus, for a deterministic model,
parameter independence is equivalent to locality,
which Bell showed in 1964 [1] to be incompati-
ble with some predictions of quantum mechanics.
Therefore, deterministic models in agreement with
quantum predictions must violate parameter inde-
pendence. Even from the very same experiment as
considered by Conway and Kochen, this conclusion
was derived before in [13, 10, 3, 8] and [9, Section
4.2.1], in [9] using only SPIN and TWIN.

It has been suggested to one of us (R. T.) by
Simon Kochen that our understanding of MIN is
too weak, that MIN should be regarded as requiring
that the actual outcome itself of A be independent
of B’s choice, and not just its probability distribu-
tion. We are unable to see why this is a reasonable

(8)
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requirement for a stochastic theory—or even what
exactly it should mean. Be that as it may, the exis-
tence of the examples described here demonstrates
that any such variant of MIN for a stochastic model
would either be unreasonable (or worse) or would
fail to be preserved under conversion of the model
to a deterministic one.
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