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P icture a swarm of robots flying to move a piece
of rubble from a disaster site, an engineer design-
ing the roof of a stadium, or a protein docking
an inhibiting drug. What these scenarios, pulled
from robotics, computer-aided design (CAD), and

structural biology, have in common is that each is gov-
erned by a finite system of geometric constraints that can
be analyzed using ideas from rigidity theory.

The classical structure studied in rigidity theory is the
bar-and-joint framework, as in Figure 1. It is composed
of universal (rotating) joints connected by bars that
constrain the distances between pairs of joints. Formally,
let 𝐺 = (𝑉,𝐸) be an undirected graph with 𝑛 vertices
(representing joints) and 𝑚 edges (representing bars). We
define a bar-and-joint framework in ℝ𝑑 to be a pair (𝐺,p),
where p = (p1,… ,p𝑛) ∈ (ℝ𝑑)𝑛 is a realization of the
joints in ℝ𝑑.

The fundamental question in rigidity theory is:

Question 1. Given a framework (𝐺,p), is it rigid?
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Figure 1. A bar-and-joint framework is composed of
universal joints constrained by bars with fixed
lengths.

Intuitively this question is asking: if one were to “push”
on the framework, would it deform? To formalize this,
we define a length function ℓ ∶ 𝐸 → ℝ specifying the
(squared) lengths of the bars from (𝐺,p). Then we are
interested in understanding the set of all realizations q
satisfying (1):
(1) ||q𝑖 − q𝑗||2 = ℓ(𝑖𝑗),∀𝑖𝑗 ∈ 𝐸.
These squared distance equations are constraints that
form a system of quadratic polynomial equations that
must be satisfied by the joint coordinates.

Given a
framework (𝐺,p),

is it rigid?

It is clear that, given
(𝐺,p), there are infin-
itelymany realizations
of 𝐺 satisfying the
same length function
ℓ, as we can use a Eu-
clidean motion of ℝ𝑑

to obtain another via
translation, reflection,

or rotation; such realizations are congruent. If there is a
unique framework (𝐺,p) in ℝ𝑑, up to congruence, then
we say that (𝐺,p) is globally rigid. We will not delve fur-
ther into the topic of global rigidity, but note that there
are many interesting and challenging questions posed
around unique realizations. To capture the intuitive no-
tion of rigidity we are interested in the framework’s local
behavior. If (𝐺,p) is the unique realization of (𝐺, ℓ) up
to congruence in some neighborhood of p, then we say
that (𝐺,p) is (locally) rigid; otherwise, it is flexible.

We also consider additional structural properties of
a framework, as illustrated in Figure 2. If the removal
of any edge in a rigid framework causes it to flex, the
framework is minimally rigid. If, on the other hand,
the removal of any edge in a rigid framework does
not cause a flex, the framework is redundantly rigid. In
a flexible framework, there may be rigid components:
vertex-maximal induced subgraphs that are themselves
rigid. These properties are typically studied via the rigidity
matroid, whose independent sets are the sets of edges
of 𝐺 that impose independent geometric constraints. In
general, amatroid is a combinatorial object abstracting the
notion of linear independence, appearing in many other
guises within mathematics. The rigidity matroid may
be defined via the rigidity matrix introduced below or
algebraically via the equationsdefining theCayley–Menger
variety.

Since (squared) distance constraints satisfied by the
joint coordinates are given by quadratic polynomials, it
is possible to try to analyze the set of all realizations
of a given pair (𝐺, ℓ) symbolically using computational
algebra. However, a Gröbner basis for an ideal generated
by quadratic polynomials in 𝑘 variables can require gener-
ators of degree𝑂(22𝑘), so computations with the squared
distance constraints may quickly become intractable.
Moreover, care must be taken in applying results from
algebraic geometry in this setting as we are interested in
realizations over the real numbers, and many results in
algebraic geometry require an algebraically closed ground
field.

Therefore, we turn to the study of “infinitesimal rigid-
ity theory” in which we analyze the Jacobian, or rigidity
matrix, of the quadratic system specified by Equation 1 in
order to understand a framework’s first-order behavior.
As we will see shortly, the dimension of the null space
of a framework’s rigidity matrix is (𝑑+1

2 ) if and only if
the framework is infinitesimally rigid. Since infinitesi-
mal rigidity implies rigidity [1], answering the following
question gives a sufficient condition for rigidity in the
algebraic setting.

Question 2. Is a given framework (𝐺,p) infinitesimally
rigid?

The rigidity matrix of a framework with 𝑛 joints
and 𝑚 bars has 𝑑𝑛 columns and 𝑚 rows, and its null
space consists of the infinitesimal motions permitted
by the framework. For example, the rigidity matrix
of the 2-dimensional framework depicted in Figure
2(c), without the dashed edge, has joint coordinates
((𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3), (𝑥4, 𝑦4)), and its rigidity matrix
is the following:

⎛
⎝

𝑥1 − 𝑥2 𝑦1 − 𝑦2 𝑥2 − 𝑥1 𝑦2 − 𝑦1 0 0 0 0
0 0 𝑥2 − 𝑥3 𝑦2 − 𝑦3 𝑥3 − 𝑥2 𝑦3 − 𝑦2 0 0
0 0 0 0 𝑥3 − 𝑥4 𝑦3 − 𝑦4 𝑥4 − 𝑥3 𝑦4 − 𝑦3

𝑥1 − 𝑥4 𝑦1 − 𝑦4 0 0 0 0 𝑥4 − 𝑥1 𝑦4 − 𝑦1
0 0 𝑥2 − 𝑥4 𝑦2 − 𝑦4 0 0 𝑥4 − 𝑥2 𝑦4 − 𝑦2

⎞
⎠
.

Every infinitesimal motion consists of a velocity vector
assigned to each vertex such that each bar is orthogonal to
the relative velocities of its joints. Hence the infinitesimal
motion instantaneously preserves the bar lengths. If the
only infinitesimal motions permitted are the (𝑑+1

2 ) trivial
motions, then the framework is infinitesimally rigid. In
the plane, there are three trivial degrees of freedom
corresponding to translation of the whole framework in
the 𝑥- and 𝑦-directions and rotation about the origin.
Indeed, the dimension of the null space of the example
rigidity matrix is generically 3, and the framework is
infinitesimally rigid. Note that a rigid framework may not
be infinitesimally rigid, as demonstrated by realizing the
(rigid) triangle in the plane with its vertices collinear; the
null space of its rigidity matrix has dimension 4.

A pivotal theorem of Laman from 1970 [4] states that
almost all realizations of a graph will have the same
infinitesimal behavior, providing a characterization of
“combinatorial rigidity” in the plane.

Theorem (Laman 1970). A graph 𝐺 = (𝑉,𝐸) with 𝑛 ver-
tices is generically minimally rigid if and only if

• 𝑚 = 2𝑛− 3, and
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(c) Adding the solid
diagonal to the four-bar
framework causes it to
be minimally rigid; with
the other (dashed)
diagonal, the
framework is
redundantly rigid.
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(d) A flexible framework may
contain a rigid component; here,
red and bolded.

Figure 2. Bar-and-joint frameworks in the plane.

• 𝑚′ ≤ 2𝑛′ − 3 for all sets of 𝑛′ ≥ 2 vertices, where
𝑚′ is the number of induced edges.

Detection of rigid
components can
vastly reduce the
complexity of

analyzing large
structures, such

as proteins.

Notice that the frame-
work in Figure 2(d)
satisfies the first condi-
tion, but fails the second
on the subset of ver-
tices {3, 4, 5, 6}. In an
arbitrary dimension 𝑑,
the first condition gen-
eralizes to 𝑚 = 𝑑𝑛 −
(𝑑+1

2 ); assuming this con-
dition holds for a graph,
the notion of generic-
ity1 can be captured
by a polynomial called
the “pure condition”
expressing the determi-
nant of the matrix obtained by appending (𝑑+1

2 ) rows
to the rigidity matrix chosen so that the rows eliminate
the trivial motions. In the plane, Laman’s theorem holds
precisely when this polynomial is not identically zero; in

1A framework is referred to as generic in rigidity theory if it
is “general” in the sense of algebraic geometry, meaning that it
lies in the complement of the Zariski closed set defined by the
vanishing of the pure condition.

this case, almost all realizations of 𝐺 are infinitesimally
rigid and hence rigid.

The counting condition characterizing rigidity in
Laman’s Theorem is called (2, 3)-sparsity. More gener-
ally, (𝑘, ℓ)-sparsity conditions require that the induced
subgraph on every subset of 𝑛 vertices has at most
𝑘𝑛′ − ℓ edges. These conditions arise as necessary
(and sometimes also sufficient) conditions for rigidity
in other constraint systems. For example, (2, 2)- and
(2, 3)-sparsity conditions characterize the rigidity of
direction-length frameworks, composed of points that
may be pairwise constrained with a specified direction
(the slope of the line joining the points) or length (a bar).
To analyze a graph for Laman’s counting condition, a
quadratic-time algorithm, the pebble game of Jacobs and
Hendrickson [3], determines if a framework is generically
rigid or flexible. If it is flexible, the algorithm detects the
rigid components in the structure.

Detection of rigid components can vastly reduce the
complexity of analyzing large structures, such as pro-
teins. These macromolecules are composed of thousands
or even hundreds of thousands of atoms whose strongest
chemical interactions, such as covalent bonds, can bemod-
eled by distance constraints. Since a protein’s function is
determined by its 3-dimensional structure, understand-
ing the motion or flexibility near its native (folded) state
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Figure 3. Rigidifying the flaps necessary for the HIV
protease to cleave the virus required proteins, as in
its closed state, would inhibit the protein’s function.

may hold the key for developing a drug that can inhibit
or activate its function.

For example, the HIV-protease protein depicted in
Figure 3 cleaves additional proteins required by the virus
with a hinge-like motion similar to a pair of scissors.
Blocking this motion by docking a drug that rigidifies
the two flaps would inhibit the protease’s function and
prevent the virus from replicating.

It is natural to model proteins and other macro-
molecules as 3-dimensional bar-and-joint structures. How-
ever, efficient rigidity analysis is blocked by the following
well-known open problem.

Question 3. Is there a combinatorial characterization for
bar-and-joint rigidity in dimension 3 and higher?

The natural generalization of Laman’s condition, the
(3, 6)-sparsity counting property, fails to capture rigidity,
as demonstrated by the example of Figure 4 known as the
“double banana.”

This framework is composed of two “bananas,” each
of which is made up of two tetrahedra glued along one
triangular face. The expected (3, 6)-sparsity counts hold
for the associated graph, but the structure is flexible, as
the bananas may rotate relative to one another about
the axis defined by their two attachment points. While
not sufficient, these counts are necessary, but even they
are challenging to verify from an algorithmic perspective.
They fall just outside a matroidal range; the efficient

Figure 4. The double banana is a flexible 3D
bar-and-joint framework, although it satisfies
generalized (3, 6)-sparsity counts. It is composed of
18 bars (solid) on 8 joints; the “bananas” can rotate
about the center axis (green, dashed).

pebble game algorithm’s approach is greedy and cannot
be easily extended to these non-matroidal counts.

Because characterizing 3-dimensional bar-and-joint
rigidity remains an open challenge, researchers turn
to a different model of rigidity called the body-and-bar
model. A body-and-bar framework is composed of rigid
bodies, constrained by bars placed between pairs of
bodies and attached at universal joints. A combinatorial
characterization for 𝑑-dimensional body-and-bar rigidity
proved by Tay in 1984 [5] uses a ((𝑑+1

2 ), (𝑑+1
2 ))-sparsity

condition, and a generalized pebble game has led to
efficient analysis tools. Note that, in this model, a pair of
bodiesmay havemore than one bar between them. Indeed,
a rigid framework in the plane consisting of two rigid
bodies must have at least three bars. In 3D, engineers use
the famous Stewart-Gough platform depicted in Figure 5
to build hexapods that support a range of positions by
changing the lengths of the legs. Once the leg lengths
are fixed, the structure becomes (generically) rigid and
may be modeled as a body-and-bar framework with each
platform a body and each leg a bar; as expected, the 6 bar
constraints rigidify the framework.

The motivation to develop other rigidity models does
not stem solely from the challenge of 3D bar-and-joint
rigidity. For the mechanical engineer using CAD software,
geometric constraints provide the language that describes
a design. A stadium roof is composed of many parts, each
of which is naturally modeled as a rigid body; the engineer
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(a) Setting the lengths of the 6 prismatic legs of the platform allows
different rigid realizations to be explored.

(b) Engineers use the platform to build hexapods, as seen in this
flight simulator.

Figure 5. The Stewart-Gough platform can be
modeled as a body-and-bar framework with each
platform a rigid body and each leg a bar.

mayspecify thedesignby requiring, for example, that “this
wooden beam must be at a particular angle to the outer
wall.” Such a structure may be modeled as a body-and-
cad framework, composed of rigid bodies with geometric
constraints beyond the point-point distance constraints
allowed in the body-and-bar model. For example, we can
impose constraints that fix the angle between the sides
of two bodies or fix the distance between a point on one
body and a line on another. The engineer expects that the
CAD software will verify that the final design is rigid, both

Figure 6. Robots work collaboratively to transport
and manipulate objects, as seen in Raffaello
D’Andrea’s “Flying Machine Arena.” Rigidity theory
can be used to develop efficient algorithms for
controlling a multi-robot formation autonomously.

for structural integrity and for ensuring that its geometry
is completely specified.

So, what about when robots fly? If a swarm of robots is
taskedwithpickingupapieceof rubbleor somethingmore
delicate like a net (as in Figure 6), local communication and
sensing canbeused to enable autonomousmaintenanceof
the required formation [2]. For example, robotsmay follow
others using specified geometric constraints, such as
fixed distance or orientation, resulting in global behavior.
Efficient algorithms for analyzing the rigidity of this
multi-robot formation can minimize communication and
sensing costs, allowing the swarm to effectively perform
its rescue operation.
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