THE GRADUATE STUDENT SECTION

WHATIS...

the Amplituhedron?

The amplituhedron is a space whose geometric struc-
ture conjecturally determines scattering amplitudes in a
certain class of quantum field theories. When it was intro-
duced in 2013 by Arkani-Hamed and Trnka [1], Quanta
Magazine' reported that “Physicists have discovered a
jewel-like geometric object that dramatically simplifies
calculations of particle interactions and challenges the
notion that space and time
are fundamental compo-
nents of reality...” In this
short article, we will not get
as far as challenging the
notions of space and time,
but we will give some ex-
planation as to the nature
and significance of the am-
plituhedron both in physics
and mathematics—where it
arises as a natural gener-
alization of the subject of
total positivity for Grassmannians.

Let us begin with the origin of these ideas in the physics
of scattering amplitudes. For any particular quantum field
theory, the probability for some number of particles to
‘scatter’ and produce some number of others is encoded
by a function called the (scattering) amplitude for that
process. These functions depend on all the observable
numbers labeling the states involved in the process—in
particular, momenta and helicity. Amplitudes can (often)
be determined perturbatively according to the Feynman
‘loop’ expansion. At leading order, they are rational
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functions of the momenta; and at the ‘¢ loop’ order of
perturbation, they are integrals over rational forms on
the space of £ internal loop momenta.

Scattering amplitudes are the bread and butter of
quantum field theory; but they are notoriously difficult
to compute using the Feynman expansion. Moreover,
individual Feynman diagrams depend on many unob-
servable parameters which can greatly obscure the
(often incredible) simplicity of amplitudes’ mathematical
structure.

A major breakthrough in physicists’ understanding of
(and ability to compute) scattering amplitudes came in
2004 with the discovery of recursion relations for tree-
level (¢ = 0) amplitudes by Britto, Cachazo, Feng, and
Witten [3]. They were first described graphically as in
Figure 1:

s

Figure 1. Recursion relations for amplitudes, encoded
in terms of bi-colored, trivalent graphs.

The precise meaning of these graphs will not be
important to us, but a few aspects are worth mentioning.
InFigure 1, amplitudes are represented by grey circles, and
any two legs may be chosen for the recursion (indicated
by arrows). Thus, the BCFW recursion relations do not
provide any particular representation of an amplitude in
terms of graphs, but lead to a wide variety of inequivalent
representations according to which two legs are chosen
at every subsequent order of the recursion. The variety of
possible recursive formulae obtained was reminiscent of
different ‘triangulations’ of a polytope—an analogy that
would be made sharp by the amplituhedron.

For several years after their discovery, the primary
importance of the recursion relations followed from
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the fact that they yield incredibly more compact—and
physically more transparent—representations for tree-
level amplitudes. Processes that would have required
more Feynman diagrams than atoms in the universe
could now be represented by a single diagram. Another
surprising feature of these relations was the discovery
that individual terms enjoy much more symmetry than
anyone had anticipated. These new symmetries were
shown to hold for amplitudes, and were later identified
with a Yangian Lie algebra.

Another key breakthrough came in 2009, when physi-
cists discovered that the graphs arising in Figure 1 could
be related to volume-forms on certain sub-varieties of
Grso(k, n)—the “nonnegative” portion of the Grassman-
nian of k-dimensional subspaces of R", to be defined
momentarily. Here, n, k are determined by the graph: n is
the number of external edges, and k = 2ng + ny — n; — 2
for a graph with ng,ny blue and white vertices, re-
spectively, and n; internal edges. (The correspondence
between these graphs and the totally nonnegative Grass-
mannian was fully understood by mathematicians, such
as Postnikov, considerably before physicists stumbled
upon it independently.) The physical implications of this
correspondence, together with its generalization to all
orders of perturbation, can be found in [2].

Given the correspondence between the terms gener-
ated by BCFW (and its all-orders generalization) and the
Grassmannian, it was natural to wonder if a more in-
trinsically geometric picture existed. Specifically, can the
recursion relations be literally viewed as ‘triangulating’
some region in the Grassmannian? And if so, can this
space be defined intrinsically—without reference to how
it should be triangulated? In 2013, Arkani-Hamed and
Trnka proposed the amplituhedron as the answer to both
questions for the case of amplitudes in planar, maximally
supersymmetric Yang-Mills theory [1].

Let us now turn to giving a precise mathematical
definition of the amplituhedron, in the 0 loop “tree” case.
(The £ loop amplituhedron for £ > 0 has a definition
which is similar but somewhat more complicated; we will
not discuss it further.) Let M € Mat(k X n) be a k X n
matrix of real numbers, with k < n. As we recall from
linear algebra, the rows of M determine a subspace of
R" called its row space. If the row space is k-dimensional
(the maximum possible), we say that M has full rank. Two
full-rank matrices M; and M, have the same row space
if for some K in the space of k X k invertible matrices,
K.M; = M>. Clearly, any k-dimensional subspace of R"
arises as the row space of some full-rank matrix; so the
collection of all k-dimensional subspaces can be described
as Matgy (kX n)/GL(k). This is the Grassmannian Gr(k, n).

The next ingredient required to define the amplituhe-
dron is the notion of positivity in the Grassmannian. A
maximal minor of a matrix M € Mat(k X n) is the deter-
minant of the k X k submatrix obtained from taking a
subset of k of the columns, in the order they appear in
the matrix. The totally positive Grassmannian, denoted
Grso(k,n), is the subspace of the Grassmannian for which
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all maximal minors have the same sign. The totally non-
negative Grassmannian, Gr(k, n), is defined in the same
way, except that we also allow some minors to vanish.

The totally nonnegative Grassmannian was studied by
Postnikov as a concrete instance of Lusztig’s theory of
total positivity for algebraic groups. It is topologically
equivalent to a ball, and has a beautiful cell structure that
can be indexed by decorated permutations (permutations
of S, with one extra bit of information for each fixed
point). Importantly, cells in this ‘positroid’ stratification
can be endowed with cluster coordinates and a natural
volume form.

We now have everything required to define the tree
amplituhedron. It is indexed by three integers, n, k, and
d, and a totally positive n X (d + k) matrix P. From the
point of view of physics, n is the number of particles,
k, defined above in the context of graphs, encodes the
total helicity flow, d is the space-time dimension, and P
encodes the momenta and helicities of the particles. Let
M € Grso(k,n) vary. The amplituhedron A, as defined
by Arkani-Hamed and Trnka [1] is simply the total image
locus,

(1) A =MP,

inside Gr(k, d + k). Notice that M.P is a k X (d + k) matrix,
automatically having full rank, so M.P really does define
a point in Gr(k,d + k).

To help build intuition, it is useful to consider some
special cases. If n = d + k, then the fact that P is totally
positive implies it is invertible, so we may as well take it
to be the identity matrix; in this case, the amplituhedron
is simply Grso(k,d + k). Another simple case arises when
k = 1, for which M is a totally nonnegative 1 X n matrix—
i.e. a vector of nonnegative numbers, not all zero. In this
case, A consists of all non-negative linear combinations
of the rows of P, and is thus a convex polytope in
projective space. The fact that P is totally positive means
that A is what is called a cyclic polytope; these have many
interesting extremal properties. In this case, repeatedly
applying the BCFW recursion literally triangulates this
polytope. A point Y in projective space determines a
hyperplane Y* in the dual projective space, and similarly,
the amplituhedron, being in this case a polytope in
projective space, determines a dual polytope A*. The
volume form on A at a point Y is given by the volume of
A* when Y* is the hyperplane at infinity.

In general, the volume form on ‘A can conjecturally
be defined by the fact that it has logarithmic singular-
ities on the boundaries of A. It can also be calculated
explicitly by pushing forward the volume form on BCFW
cells. However, it would be desirable to have an explicit,
intrinsic description, as given above for k = 1. This would
presumably require an answer to the question, “What is
the dual amplituhedron?”—something that we must leave
for the future.
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