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Open Problems Concerning
Michell Trusses

Wilfrid Gangbo
Communicated by Christina Sormani

The Dona Ana Bridge in Sena, Mozambique.

We give a brief introduction to the problem of Michell
trusses, a beautiful and challenging optimization problem
related to the construction of bridges that was formulated
by Michell [3] in 1904. Activity on the Michell Problem
only began gainingmomentum about fifty years later, and
many interesting questions about it are still open. This
problem first appeared in the engineering literature in a
formulation that is accessible to any college student. It
leads to deep and fascinatingmathematical problems, and
even the original relaxed problem is not yet fully resolved.
It is a good illustrationof the obstacles onemust overcome
when dealing with certain variational problems and of
how duality can be a key to characterizing optima.

Our data consist of finitely many force vectors

F1,… ,F𝑘 ∈ ℝ𝑑,
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where 𝑑 = 2, 3, and their respective points of application

𝑀1,… ,𝑀𝑘 ∈ ℝ𝑑.

We refer to

F =
𝑘
∑
𝑗=1

F𝑗𝛿𝑀𝑗

as a force, which is assumed to be of null average and to
have zero torque:

(1)
𝑘
∑
𝑗=1

F𝑗 = 0,
𝑘
∑
𝑗=1

F𝑗 ∧𝑀𝑗 = 0.

Such a force must have at least two points of application
(𝑘 ≥ 2), and the simplest example is

beam(𝐴,𝐵) = (𝛿𝐵 −𝛿𝐴)
𝐵 −𝐴
|𝐵−𝐴| ,

depicted in Figure 1, which represents a beam in tension.
Alternatively, we have −beam(𝐴,𝐵), which represents a
beam in compression.
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Figure 1. A beam in tension is represented by a force
beam (𝐴,𝐵).

An elementary fact in the mechanical engineering
literature is that any force F that satisfies (1) can be de-
composed into a finite linear combination of beam(𝐴𝑖, 𝐴𝑗):
there exist 𝑛 ∈ ℕ, large enough, {𝐴1,… ,𝐴𝑛} ⊂ ℝ𝑑, and
{𝜆𝑖𝑗}𝑛𝑖,𝑗=1 ⊂ ℝ such that

(2) F =
𝑛
∑

𝑖,𝑗=1
𝜆𝑖𝑗beam(𝐴𝑖, 𝐴𝑗).

When this equation holds we say that the frame [𝜆,𝒜] =
[{𝜆𝑖𝑗}, {𝐴𝑖}] withstands F.

In general the decomposition in (2) is far from unique,
and so one seeks themost optimal decomposition. Michell
himself proposed [𝜆,𝒜] to be optimal if it minimizes the
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cost function

(3) Cost[𝜆,𝒜] ∶=
𝑛
∑

𝑖,𝑗=1
|𝜆𝑖𝑗| |𝐴𝑖 −𝐴𝑗|,

which represents the total volume of a frame, where
|𝐴𝑗−𝐴𝑖| is the length of the beam in the frame extending
from 𝐴𝑖 to 𝐴𝑗 and having surface area |𝜆𝑖𝑗|. By sym-
metrizing the problem one can (with no loss of generality)
assume that the problem’s matrix (𝜆𝑖𝑗)𝑖𝑗 is symmetric.
The set 𝒰 of displacements, 𝑢 ∶ ℝ𝑑 → ℝ𝑑, is defined as

(4) 𝒰 = {𝑢 ∶ |(𝑢(𝑥) − 𝑢(𝑦)) ⋅ (𝑥 − 𝑦)| ≤ |𝑥 − 𝑦|2}.
The functional 𝐽 ∶ 𝒰 → ℝ, which represents the total
work done by the force F when the material undergoes
displacement 𝑢, is defined by

(5) 𝐽[𝑢] ∶= ∫
ℝ𝑑
⟨𝑢;F(𝑑𝑥)⟩,

plays a crucial role. Indeed if 𝑢 ∈ 𝒰 and the frame [𝜆,𝒜]
withstands F, then the work may be computed to be

𝐽[𝑢] =
𝑛
∑

𝑖,𝑗=1
𝜆𝑖𝑗(𝑢(𝐴𝑗) − 𝑢(𝐴𝑖)) ⋅ (

𝐴𝑗 −𝐴𝑖
|𝐴𝑗 −𝐴𝑖|

).

So immediately we see that

(6) 𝐽[𝑢] ≤
𝑛
∑

𝑖,𝑗=1
|𝜆𝑖𝑗|

|𝐴𝑗 −𝐴𝑖|2
|𝐴𝑗 −𝐴𝑖|

= Cost[𝜆,𝒜].

Thus, the work is bounded above by the cost,

(7) sup
𝑢∈𝒰

𝐽[𝑢] ≤ inf
(𝜆,𝒜,𝑛)

{Cost[𝜆,𝒜]},

where the infimum on the right is taken over frames
[𝜆,𝒜] that withstand F as in (2).

Michell [3] proposed that one should have the following
duality principle:

(8) sup
𝑢∈𝒰

𝐽[𝑢] = inf
(𝜆,𝒜,𝑛)

{Cost[𝜆,𝒜]}.

Let us consider 𝑑 = 2 and the force
F = (𝛿𝑒1 − 2𝛿0 +𝛿−𝑒1),

where 𝑒1 = (1, 0) and 𝑒2 = (0, 1). Let us consider a
sequence of frames, [𝜆𝑛,𝒜𝑛], as in Figure 2.

Figure 2. The frames [𝜆𝑛,𝒜𝑛] when 𝑛 = 13 and
𝑛 = 21, where dotted red lines are in tension and
thick black lines are in compression.

Bouchitté, Seppecher, and the author [1] identified a
specific function 𝑢∗ ∈ 𝒰 and proved that

(9) 𝐽[𝑢∗] ≥ Cost[𝜆𝑛,𝒜𝑛] − 0( 1
𝑛) .

Figure 3. The limit measure 𝜎∗.

By (7) and (9), not only is ([𝜆𝑛,𝒜𝑛])𝑛 a minimizing
sequence but (8) holds as well.

Therefore, if 𝑢∗ is a maximizer in (8), then [{𝜆𝑖𝑗}, {𝐴𝑖}]
is a minimizer in (8) if and only if

𝜆𝑖𝑗(𝑢(𝐴𝑗) − 𝑢(𝐴𝑖)) ⋅ (𝐴𝑗 −𝐴𝑖) = |𝜆𝑖𝑗||𝐴𝑗 −𝐴𝑖|2

for all 𝑖, 𝑗 ∈ {1,… ,𝑛}.
Observe that as 𝑛 goes to ∞, the sequence ([𝜆𝑛,𝒜𝑛])𝑛

intuitively “converges” to the measure 𝜎∗, depicted in
Figure 3, which clearly fails to belong to the set of frames
made from finitely many beams. To understand this
convergence more rigorously, we view each term in the
sequence of frames as a measure:

𝜎 ∶=
𝑛
∑

𝑖,𝑗=1

𝜆𝑖𝑗
|𝐴𝑗 −𝐴𝑖|2

(𝐴𝑗 −𝐴𝑖) ⊗ (𝐴𝑗 −𝐴𝑖)ℋ1
|[𝐴𝑖,𝐴−𝑗],

where ℋ1
|[𝐴𝑖,𝐴𝑗] denotes the Hausdorff measure restricted

to the segment [𝐴𝑖, 𝐴𝑗]. We can then take the weak limit
of the measures to obtain 𝜎∗. It is readily checked that
the equilibrium equation (2) can be written in the class of
measures as
(10) − div(𝜎) = F

in the sense of distributions.
Thus in order to take into account all possible struc-

tures that may appear in the limit, we are forced to search
for minimizers in the bigger set, Σ, of strain tensors:

Σ = {𝜎 ∶ −div(𝜎) = F}.
A strain tensor,𝜎, is a symmetricmatrix whose entries are
Radon measures satisfying (10) as distributions. Written
in terms of strain tensors,

Cost[𝜆,𝒜] = 𝒞[𝜎] ∶= ∫
ℝ𝑑

𝜌0(𝜎),

where𝜌0 is the one-homogeneous function that associates
to a square symmetric matrix the sum of the absolute
values of its eigenvalues. Since the infimum in (8) is taken
over the set of all natural numbers 𝑛 ∈ ℕ, it can be shown
to have its infimum achieved and in fact
(11) sup

𝑢∈𝒰
𝐽[𝑢] = inf

𝜎∈Σ
𝒞[𝜎].
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This right-hand side is what is referred to as a relaxation
of the minimization problem at the right-hand side of (8).

In order to keep track of the stream lines of principal
actions in the strain tensors, our proposal in [1] was
to look for 𝜎 that can be represented by signed Radon
measures

𝛾 = 𝛾+ −𝛾−

defined on the set of curves. The positive part 𝛾+ of the
signed measure corresponds to lines in tension, while the
negative part 𝛾− corresponds to the lines in compression.
We shall use the notation

|𝛾| ∶= 𝛾+ +𝛾−.
These stream lines form the Hencky-Prandtl net when
𝑑 = 2. See Figure 4.
As described in [1], the Hencky-Prandtl net is a fam-
ily of orthogonal curves which represent the limits of the
families of bars through the optimization process.

fe

bc

−a −a

o

o

aa

Figure 4. Here we have depicted the Hencky-Prandtl
net for 𝜎∗ of Figure 3, with 𝛾+ depicted on the left
and 𝛾− on the right.

Let X be the set of 𝐶1,1 curves of finite length and
for 𝐶 ∈ X let 𝑡𝐶 denote a unit tangent to 𝐶. Any Radon
measure 𝛾 on X induces a symmetric matrix 𝜎[𝛾] ∈ Σ
defined as

𝜎[𝛾] = ∫
X
(∫

𝐶
⟨𝜉(𝑥); 𝑡𝐶 ⊗ 𝑡𝐶⟩𝑑ℋ1)𝛾(𝑑𝐶).

We [1] show that the minimization problem in (11) is
equivalent to finding the infimum

(12) inf{∫
X
ℋ1(𝐶)|𝛾|(𝑑𝐶) ∶ −div(𝜎[𝛾]) = F} .

When (12) has a minimizer, 𝛾∗, then the strain tensor,
𝜎[𝛾∗], is called a Michell truss.

Thanks to Korn’s inequality, one sees that (11) admits a
maximizer, 𝑢∗, which is almost everywhere differentiable.
Given 𝐶 in X, let 𝜅 denote the curvature along 𝐶 and
let 𝑠 be the arc–length parametrization. The tangential
component of 𝑢∗, denoted as 𝑢𝜏 ∶= 𝑢∗ ⋅ 𝑡𝐶, is Lipschitz
along 𝐶, whereas the orthogonal component denoted as
𝑢𝜈 is continuous. We show that a necessary and sufficient
condition for 𝛾∗ to be a minimizer in (12) is

𝑑𝑢𝜏
𝑑𝑠 − 𝜅𝑢𝜈 = ±1 ℋ1 a.e. and 𝛾± a.e.

Open Problems

I. Does (12) admit aminimizer𝛾∗?When is𝜎[𝛾∗]uniquely
determined?

II. Is there a radius, 𝑟 > 0, such that any curve, 𝐶, in
the support of 𝛾∗ is contained in the ball 𝐵𝑟(0)? Are
minimizers of infΣ 𝒞 supported by 𝐵𝑟(0)?
III. Let 𝑢∗ be a maximizer of the functional 𝐽[𝑢] over the
collection of displacements 𝑢 ∈ 𝒰, as in (4)–(5). Can one
identify the set where

2𝐸(𝑢∗) ∶= ∇𝑢∗ +∇𝑇𝑢∗

is not continuous or not differentiable?

The Dona Ana Bridge in Africa has forty spans and is
one of the longest bridges in the world.

We close with a discussion of the first of these open
problems in dimension 𝑑 = 2. Note that 𝑢∗ ∈ 𝒰 if and
only if the eigenvalues 𝑒1 and 𝑒2 of the symmetric matrix
𝐸(𝑢∗) have their ranges in the set [−1, 1]. Let 𝑎1 and 𝑎2 be
the eigenvectors of 𝐸(𝑢∗), associated to the eigenvalues
𝑒1 and 𝑒2 respectively, so that

𝐸(𝑢∗) = 𝑒1𝑎1 ⊗𝑎1 + 𝑒2𝑎2 ⊗𝑎2.
Since 𝐽[𝑢] is a linear function of 𝑢, formally at least its
maximizer 𝑢∗ is an extreme point of the convex set 𝒰.
One is tempted to assume that

|𝑒1| = |𝑒2| ≡ 1;
however this remains an open question in general.

As a symmetric matrix, 𝜎∗ is also diagonalizable, and
its eigenvalues 𝜆1 and 𝜆2 are signed Radon measures. The
duality identity (8) not only forces 𝜎∗ to have the same
eigenvectors as 𝐸(𝑢∗) but also implies that

𝑒1𝜆1 ≥ 0 and 𝑒2𝜆2 ≥ 0.
Therefore, (𝜆1, 𝜆2) solves the system
(13) − div (𝜆1𝑎1 ⊗𝑎1 +𝜆2𝑎2 ⊗𝑎2) = F.
This is a system of hyperbolic equations in (𝜆1, 𝜆2) whose
characteristicswould be two families of orthogonal curves
if we could prove these characteristics exist. These curves
are the missing pieces to build a measure 𝛾∗ such that
𝜎∗ = 𝜎[𝛾∗].

It is suspected that if 𝑒1𝑒2 ≤ 0 everywhere, then there
is at most one pair (𝜆1, 𝜆2) that satisfies (13) on ℝ2. This
would solve the question of uniqueness in dimension two.

Those who are interested in learning more about these
open problems should see the work of the author with
Bouchitté and Seppecher [1], as well as his work with
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Dacorogna [2] and references cited within these two
papers.
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