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ZWHATIS...

a Hyperbolic 3-Manifold?

The simplest example of a hyperbolic manifold is hy-
perbolic geometry itself, which we describe using the
Poincaré disk model. In Figure 1 we see the 2-dimensional
version H? and the 3-dimensional version H?, each the
interior of a unit 2-disk or 3-disk. In both cases, geodesics
are diameters or segments of circles perpendicular to
the missing boundary. Notice that for any triangle with
geodesic edges, the sum of the angles adds up to less
than 180 degrees. This choice of geodesics can be used
to determine a corresponding metric, which turns out
to have constant sectional curvature —1, justifying the
statement that hyperbolic space is negatively curved.

(A) (B)

Figure 1. The Poincaré disk models of hyperbolic
2-space H” and hyperbolic 3-space H? with geodesics
that are diameters and segments of circles
perpendicular to the missing boundary.

We say that a surface (a 2-manifold) is hyperbolic if
it also has a metric of constant sectional curvature —1.
We can use this as a definition of a hyperbolic surface,
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but there are two other helpful ways to think about a
hyperbolic surface.

When a surface S has such a metric, we can show
that the universal cover of the surface is H? and there
is a discrete group of fixed-point free isometries I' of H?
that act as the covering transformations such that the
quotient of H? by the action of T is the surface.

By choosing a fundamental domain for the group of
isometries I', we can also think of S as being obtained
from a polygon in H? with its edges appropriately glued
together in pairs by isometries as in Figure 2. In particular,
at each point in S, there is a neighborhood isometric to a
neighborhood in H?. So locally, our surface appears the
same as H?Z.

Among all topological surfaces, how prevalent are the
hyperbolic surfaces? Considering compact orientable sur-
faces without boundary, only the sphere and the torus
are not hyperbolic. All other orientable surfaces are hy-
perbolic as in Figure 3. If we throw in nonorientable
surfaces, only the projective plane and the Klein bottle
are not hyperbolic. And if we allow punctures, the only
additional surfaces that are not hyperbolic are the once-

Figure 2. Gluing together pairs of edges of a hyper-
bolic fundamental domain yields the genus two
surface.
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Figure 3. A list of closed orientable surfaces and their
respective geometries.

and twice-punctured sphere and the once-punctured pro-
jective plane. So among the infinitude of closed surfaces
and closed surfaces with arbitrarily many punctures, all
but seven are hyperbolic. So if we want to understand the
geometries of surfaces, it’s all about the hyperbolic case.

A 3-manifold is a topological space M that is lo-
cally 3-dimensional. That is to say, every point has a
neighborhood in the space that is homeomorphic to a 3-
dimensional ball. For instance, the 3-dimensional spatial
universe in which we all live is such a 3-manifold. Another
example would be to take 3-space (or the 3-dimensional
sphere if we want to begin with a compact space) and
remove a knot. Then it is still true that this is a 3-manifold,
as every point still has a ball about it that is 3-dimensional.
We just have to pick the ball small enough to avoid the
missing knot.

In the 1970s and 1980s, work of William Thurston
(1946-2012) and others led to the realization that many
3-manifolds are hyperbolic. Here again, to be hyperbolic
just means that there is a metric of constant sectional
curvature —1 or, equivalently, that there is a discrete
group of fixed-point free isometries I acting on H* such
that the quotient of the action is M.

A famous example is the figure-eight knot complement.
Here, the fundamental domain for the action of the
discrete group of isometries is a pair of ideal regular
hyperbolic tetrahedra (all angles between faces are 1/3),
as in Figure 4.

An ideal hyperbolic tetrahedron is one with geodesic
edges and faces such that it is missing its vertices as
they sit on the missing boundary of H3. The sum of
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the volumes of this pair of ideal regular tetrahedra is
2.0298 ..., a number of interest to number theorists as
well as topologists, since it is also related to the value of
the Dedekind zeta function at 2. (See for instance Zagier’s
Inventiones article from 1986.) This volume was proved
to be the smallest hyperbolic volume of any knot by Cao
and Meyerhoff in an Inventiones article from 2001.

Why is it useful for a 3-manifold to be hyperbolic? One
extraordinary advantage is the Mostow-Prasad Rigidty
Theorem, which says that if you have a finite volume
hyperbolic 3-manifold, its hyperbolic structure is com-
pletely rigid. All such structures on a given 3-manifold
are isometric. In particular, every such 3-manifold has a
unique volume associated with it. We have turned floppy
topology into rigid geometry.

Compare that to the Euclidean case. We could take a
cube and glue opposite faces straight across. This yields
the 3-dimensional torus. But we can make it out of a
small cube or a big cube, so there is no unique volume
associated to it. We could even trade in the cube for a
parallelepiped, and we would still have a valid Euclidean
structure on the 3-torus.

On the other hand, the figure-eight knot has a hy-
perbolic complement with volume 2.0298.... So we now
have an incredibly effective invariant for distinguishing
between 3-manifolds. This was an essential tool used in
the classification of the 1,701,936 prime knots through
16 crossings by Hoste, Thistlethwaite, and Weeks in 1998.

In the case of knots, volume is not enough to com-
pletely distinguish them for two reasons. First, there are
nonhyperbolic knots. Thurston showed that knots fall
into three categories: they can be torus knots, satellite
knots, or hyperbolic knots. A torus knot is a knot that

Figure 4. A fundamental domain for the figure-eight
knot complement constructed from two ideal regular
tetrahedra in H>.
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Figure 5. A torus knot at top and a satellite knot, bot-
tom right. Every other knot must be hyperbolic.

lives on the surface of an unknotted torus, as in Figure 5,
and is determined by how many times it wraps the long
and short way around the torus.

A satellite knot is what you might guess, a knot K
that orbits another knot K’ in the sense that it exists in
a neighborhood of K’, which is to say a solid torus with
K’ as core curve. It is a truly marvelous fact that after
excluding just these two categories of knots, all other
knots are hyperbolic.

Second, although rare for low crossing number, there
can be two different knots with the same volume. For
instance, the second hyperbolic knot 5, has the same
volume as the 12-crossing (—2,3,7)-pretzel knot as in
Figure 6.

/\_/

Figure 6. There do exist examples of hyperbolic knots
with the same volume, such as the pair pictured here.

What we would like is a complete classification of all
closed 3-manifolds. This means we would like a way to
“list” them all and to decide, given any two, whether or
not they are homeomorphic.

In 1982 William Thurston proposed the Geometrization
Conjecture. It says that every closed 3-manifold can be
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cut open along an essential set of tori and spheres into
pieces, and after capping off the spheres with balls, each
of the components would be 3-manifolds with one of eight
specified geometries, one of which is H>. In 2003 Grigory
Perelman revolutionized low-dimensional topology by
proving the Geometrization Conjecture. (He also proved
the Poincaré Conjecture in the process, which was a
necessary piece in the proof of the larger Geometrization
Conjecture.)

So we would like to determine the manifolds with each
of the eight geometries. In fact, the manifolds associated
to the seven other geometries have been classified and are
well understood. There only remains the manifolds that
are hyperbolic. Why have we not succeeded in classifying
those? The situation is analogous to what happened with
surfaces. This is the richest of the geometries, with the
preponderance of the manifolds. It is the mother lode.

Thurston also proposed the Virtual Haken Conjecture,
implicit in the work of Waldhausen, that every closed
3-manifold satisfying mild conditions (having infinite
fundamental group and no essential spheres) either con-
tains an embedded essential surface or possesses a finite
cover that does so, thereby allowing the decomposition
along the surface into simpler pieces. The proof of the
Geometrization Conjecture allowed for a proof of the
Virtual Haken Conjecture for all 3-manifolds except hy-
perbolic 3-manifolds, which is not such a surprise, since
again, this is where the action is. It was this case that
Ian Agol completed in 2012, thereby settling this funda-
mental conjecture. Agol received the three million dollar
Breakout Prize in mathematics for this and related work.

Research continues forward as we attempt to un-
derstand hyperbolic 3-manifolds, their volumes, and
other related invariants. This geometric approach to
low-dimensional topology has become fundamental to
our understanding of 3-manifolds and will continue to
play a critical role for years to come.

Additional Reading
Volumes of Hyperbolic Link Complements, Ian Agol,
[https://www.ias.edu/ideas/2016/agol-hyperbolic]|

[-Tink-complements|.
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