At a lunch briefing in the Dirksen Senate Office Building on December 4, 2018, Rodolfo H. Torres gave the Hill staffers in attendance what former US Representative Bart Gordon (D-TN) called “ammunition” for their science advocacy. In his half hour at the lectern, the University of Kansas mathematician (and AMS Fellow) made the case for federal funding of basic research by showing how investigation of foundational questions can launch lines of inquiry that produce, sometimes decades later, societally beneficial applications galore.

“This is the way, many times, research takes place,” Torres explained. “We move from fundamental research in maybe math, physics, or biology to applied research in which we want to apply these tools to solve specific problems, and eventually we get—sometimes—to translational research. We find cures for diseases and solve problems that affect our society and the way in which we live.”

Titled “From the Color of Birds to Nanomaterials and New Technologies,” Torres’s talk juxtaposed what he acknowledged to be an unlikely trio of topics, “things you won’t normally think to find in the same sentence.” Before Torres discussed the blue hue of birds, however, he used analogies to give his audience a feel for Fourier analysis.

Fourier analysis decomposes a signal into a combination of oscillating waves of different frequencies and amplitudes, he said, much as a prism separates a beam of light into a spectrum of colors of different wavelengths. Representing a signal using its Fourier coefficients is like writing a recipe for a cake when the ingredients—here the waves of different frequencies—are always the same. The amounts—the amplitudes—suffice to encode the information. Similarly, Torres explained, a two-dimensional image can be represented as a superposition of planar waves.
Rodolfo Torres mentions the arsenal of tools for signal analysis and image processing that are based on Fourier analysis.

spaghetti. Torres and his biologist colleagues saw a certain order in these cross sections, and they adapted the two-dimensional Fourier transform to analyze the periodicity and optical properties of the tissue. They demonstrated that the nanostructure of the collagen arrays accounts for that brilliant blue.

“Only certain wavelengths that resonate with the physical distance present in the material get scattered,” Torres explained, “and those are the ones we see.”

Such structural color exists not just in birds but also in mammals (a mandrill’s nose, for instance), butterflies, and dragonflies. And photonic structures, structures that selectively interfere with light, don’t possess only optical properties. They can also render tissues antibacterial or self-cleaning or superhydrophobic (extremely difficult to wet). Study of tissues with desirable properties such as these has “really led to what I would call the bioinspired nanomaterial revolution,” said Torres.

Research in the field of evolutionary photonics promises applications in renewable energy, nanomedicine, and advanced material engineering. Torres encouraged audience members to visit the website of the NSF-funded National Nanotechnology Coordinated Infrastructure (https://www.nnci.net) to learn how nanostructures might enable more efficient light harvesting or advance energy storage. As an example of a medical application of nanofabrication, he highlighted a flexible membrane hundreds of times thinner than aluminum foil that alleviates glaucoma by distributing pressure and facilitating absorption of fluid buildup.

Torres closed his talk by reiterating the role of mathematics in science and technology and underscoring the potential of basic mathematics to unlock future advances. “When we start talking about order and symmetry and geometry, this is the field of mathematics,” Torres said. Mathematicians can quantify this order (or lack thereof), thereby explaining
physical phenomena found in nature. These newly understood natural phenomena then serve as inspiration for cutting-edge human-developed technologies.

Torres suggested thinking of applied research as building a key to a particular door we need to open. Fundamental research, in contrast, is like creating a master key, one that will open many different doors. “In fact, it’s going to be opening doors that you still don’t know that you need to open,” he said. “But you will have it ready when the need arises.”

Of course the purpose of congressional briefings such as the one on December 4 is to publicize among policymakers and keepers of the federal purse-strings instances of sometimes long-unused master keys of mathematics opening societally fruitful doors. It’s a service that Joel Creswell from the office of Congressman Daniel Lipinski (D-IL) appreciates as he supports Lipinski’s work on the Committee of Science, Space, and Technology.

“These aren’t stories that you can come up with from looking at the research literature,” he said in response to MSRI Director David Eisenbud’s post-presentation question about what prompted audience members to attend. “You really need experts in the field to be able to say, ‘Here’s a discovery that traces back to this basic research.’”

What You Can Do
You, too, can help get the word out about the importance of funding basic research:
• Write a letter to your senator or representative.
• Write an op-ed for a local publication.
• Organize a talk at your institution about the unexpected utility of basic math. Invite your representative and work with your school’s government relations office.
• See the AMS Office of Government Relations’ “Tools to take action” page https://www.ams.org/government/dc-prepare to get started.

Credits
Author photo is by Craig Merow.
All other photos are by Scavone Photography.