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Mathematics is filled with existence theorems such as

Theorem 1. Every vector space has a basis.

Such statements do not address how one goes about
finding the known-to-exist object. For example, Theorem
1 naturally leads to the “Basis Problem.”

Problem 2 (Basis Problem). Given a vector space, can we
compute a basis for it?

It turns out that the answer to this question is no—from
a computational viewpoint, bases may not exist for vector
spaces. For this reason, we say that the Basis Problem is not
a “computable” problem. We can, however, ask just how
far from computable the Basis Problem is and what other
problems have the same computational power. A natu-
ral way to compare the algorithmic difficulty of two prob-
lems is to determine whether having the ability to solve
one allows a person to solve the other. In this case, the
latter problem must be no “harder” than the former. Un-
der this problem-reduction approach, two problems have
the same computational power if they each can be used to
solve the other.

In my talk, we will explore the key ideas behind taking
a “computable” perspective on mathematics and how this
compares with an “existence” one, as in the example above.
We will also illustrate the problem-reduction approach us-
ing problems from across mathematics. Moreover, this
approach has strong connections to proof theory, specifi-
cally, calibrating exactly which axioms of mathematics are
needed to prove the original existence theorems.

My talk draws on ideas from computability theory (also
known as recursion theory), a branch of logic. To learn
more about what logic offers other areas of mathematics,
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check out the AMS-ASL Special Session, Logic Facing Out-
wards, Wednesday, January 15, 2:15PM–6PM, and Thurs-
day, January 16, 8AM–12PM. These talks, like mine, will
not assume a background in logic. The remainder of this
article gives a taste of some of the ideas mentioned earlier.

To address the Basis Problem, one first needs a precise
understanding of what it means to “compute.” Alan Tur-
ing gave the accepted definition [4] in terms of so-called
“Turing Machines,” and his model of computation laid the
theoretical framework for the invention of computers as
we know them today. We will rely here on the useful (and
accurate) anachronism of thinking of Turing’s model as
being a computer and Turing Machines as being computer
programs that use natural numbers for inputs and outputs.
In short, a Turing Machine is a finite set of instructions
that can be applied to a particular input 𝑛 in a step-by-step
and completely determined fashion. Given some input 𝑛,
the resulting procedure either terminates or “halts” after
some finite number of steps and gives an output, or the
computation continues to proceed forever. We can now
define when a function with domain and codomain ℕ is
computable.

Definition 3. A function 𝑓 ∶ ℕ → ℕ is computable if there
is a Turing Machine that, when run on input 𝑛, halts and
outputs 𝑓(𝑛).

As long as a function’s domain and codomain can be
encoded by natural numbers, we can also discuss the com-
putability of the function relative to that encoding. For ex-
ample, it is not hard to come up with an easy-to-compute
bijection between ℕ2 and ℕ that encodes pairs (𝑖, 𝑛) as
single natural numbers ⟨𝑖, 𝑛⟩. Furthermore, a computer
program written in a particular language can be viewed
as a finite sequence of symbols from a fixed finite alpha-
bet. By ordering all such finite sequences (say by length
and then lexicographically), we obtain a list of programs
(𝑃𝑖)𝑖∈ℕ. Many of the programs 𝑃𝑖 are nonsense (e.g., do
not obey syntax rules), but certainly every possible pro-
gramwritten in that language appears. Since there are only
countablymany programs, and thus TuringMachines, and
uncountably many functions 𝑓 ∶ ℕ → ℕ, we know that
there exist noncomputable functions. Even better, though,
the encoding (𝑃𝑖)𝑖∈ℕ allows us to write down a particular
example of a function that is not computable.

Consider the Halting Problem:

Problem 4 (Halting Problem). If program 𝑃𝑖 is run on in-
put 𝑛, does the computation halt?

In other words, the problem asks whether a particular pro-
gram’s computation terminates when run on a particular
input (see Figure 1). The Halting Problem is likely all too
familiar. Computer users encounter it when they see the
spinning “wheel” or “beachball of death” on their screen
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Figure 1. “Halting Problem” by Randall Munroe.

Figure 2. “Beachball of death” by Mark H. Evans.

and have to decide whether to wait or restart the machine
(see Figure 2).

We can encode a “solution” to the Halting Problem by
the function ℎ ∶ ℕ → ℕ where

ℎ(⟨𝑖, 𝑛⟩) =
⎧
⎨
⎩

1 if program 𝑃𝑖 run on input 𝑛 halts

after finitely many steps,

0 otherwise.

One can show that the function ℎ, and thus the Halting
Problem, is not computable.

Notice that the Halting Problem is an existence state-
ment in disguise: the problem is asking whether there is
some point in time when the computation is finished. In
fact, the Halting Problem encodes all purely existential in-
formation in a sense that can be made precise and so plays
a central role in computability theory.

Let us return to the problem of computing a basis for
a given vector space. Although we have formalized what
we mean by computation, the Basis Problem remains im-
precise without making explicit the terms “given a vector
space” and “compute a basis.” If we are to “compute a
basis,” it seems reasonable that we must be able to com-
pute information about the given vector space. As alluded
to above, an object can only be computable if it can be en-
coded in terms of natural numbers. Hence, we will assume
we are working with countable vector spaces, say over the
countable field ℚ for concreteness. (This assumption is

standard, but there are ways to discuss the computability
of uncountable structures; see, e.g., [2].) Once an index-
ing ( ⃗𝑣𝑖)𝑖∈ℕ of a vector space 𝑉 is fixed, the vector addition
and scalar multiplication by any given 𝑞 ∈ ℚ on 𝑉 induce
functions on the indices 𝑖. In other words, the induced
functions, which we will call 𝑖+ and 𝑖𝑞⋅, describe the vector
space operations in terms of the indexing (see Figure 3 for
a careful definition of 𝑖+ and 𝑖𝑞⋅).
Definition 5. Let 𝑉 be a countable vector space over ℚ.

1. A presentation of 𝑉 is an indexing ( ⃗𝑣𝑖)𝑖∈ℕ of the ele-
ments of 𝑉 together with the functions 𝑖+ and 𝑖𝑞⋅ for
each 𝑞 ∈ ℚ.

2. A presentation ( ⃗𝑣𝑖)𝑖∈ℕ of 𝑉 is computable if the
functions describing vector addition and scalar mul-
tiplication in terms of this indexing are computable;
i.e., 𝑖+ and the function (𝑞, 𝑛) → 𝑖𝑞(𝑛) are computable.

Vector Addition

on Indices

𝑖+ ∶ ℕ2 → ℕ

(𝑖, 𝑗) → 𝑘 if

⃗𝑣𝑖 + ⃗𝑣𝑗 = ⃗𝑣𝑘

Scalar Multiplication

by 𝑞 ∈ ℚ

𝑖𝑞⋅ ∶ ℕ → ℕ

𝑛 → 𝑚 if

𝑞 ⃗𝑣𝑛 = ⃗𝑣𝑚
Figure 3. Definitions of the functions 𝑖+ and 𝑖𝑞⋅.

Thus, when we say “given a vector space” in the Ba-
sis Problem, we mean that we are handed a computable
presentation ( ⃗𝑣𝑖)𝑖∈ℕ of a vector space. The phrase “com-
pute a basis” is then synonymous with giving an algorithm
for determining which ⃗𝑣𝑖 in 𝑉 are in the basis. In other
words, a basis relative to a presentation ( ⃗𝑣𝑖)𝑖∈ℕ is com-
putable if the characteristic function (in terms of the in-
dices 𝑖) of the basis is computable. We can now formalize
the Basis Problem as

Problem 6. Does every computable presentation of a
(countable) vector space have a computable basis?

We mentioned earlier that the answer is no. One can
construct such a vector space by building a vector space in
which certain linear dependences do not become appar-
ent until late in the construction. Although the Basis Prob-
lem is not computable, it is no harder than the Halting
Problem. Given a computable vector space 𝑉 , the ability
to solve the Halting Problem allows one to compute a ba-
sis for 𝑉 . Even more exciting, the Basis Problem can be
used to solve the Halting Problem, in that there is a com-
putable presentation of a vector space𝑉 such that any basis
of 𝑉 can be used to compute the function ℎ. Therefore, the
two problems are computationally the same [1]; see also
[3, §III.4].

To fully understand the power of these problems, we
need to compare them to others. A version of the Heine–
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Borel theorem for the real closed unit interval (i.e., find-
ing a finite subcovering of an open covering made of in-
tervals) is a strictly weaker problem than the Halting/Basis
Problems, whereas writing a countable abelian group as
the direct sum of a divisible group and a reduced group is
a strictly harder one [3, §§IV.1, VI.4]. The overall structure
of problem difficulty is extremely rich, and understanding
which problems have the same computational power illu-
minates what makes these problems “tick.” Please joinme
as we take a computable perspective onmathematics at the
2020 JointMeetings. I also hope to see you at the AMS-ASL
Special Session, Logic Facing Outwards, Wednesday, Janu-
ary 15, and Thursday, January 16.
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Figure 1 is by Randall Munroe, licensed under CC BY-NC 2.5
(see https://creativecommons.org/licenses/by
-nc/2.5), and available at https://xkcd.com/1266.

Figure 2 is by Mark H. Evans, licensed under CC BY
2.0 (see https://creativecommons.org/licenses
/by/2.0), and available at https://www.flickr.com
/photos/mevs/5306313081/in/photostream.

Photo of the author is courtesy of Richard Howard.
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