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Introduction
The end of the 20th century and the beginning of the 21st
century has seen a revolutionary increase in the availability
of data. Indeed, we are in the middle of the sensing revo-
lution, where sensing is used in the broadest meaning of
data acquisition. Most of this data goes unprocessed, un-
analyzed, and, consequently, unused. This causes missed
opportunities, in domains of vast societal importance—
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health, commerce, technology, network security, just to
mention some.

A variety of mathematical methods have emerged out
of that need. Perhaps the most popular, the methodol-
ogy of Deep Neural Networks has as the underlying learn-
ing elements “neuron functions” that are modeled after
biological neurons. The algorithms based on deep learn-
ing have achieved substantial success in image recogni-
tion, speech recognition, and natural language processing,
deploying the “supervised” machine learning philosophy.
Convolutional neural networks provided a superstructure
to the deep neural network architecture that resembles the
organization of the animal visual cortex. This led to an
enormous success in image recognition, and even in realis-
tic image generation, via Generative Adversarial Networks
(GANs). All of these examples are essentially static pattern
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recognition or generation tasks. Deep learning method-
ologies are less successful in dynamically changing con-
texts, present, for example, in autonomous driving. This is
because the learning architectures are not adapted to phys-
ical properties of the time variable. In contrast, the sym-
metry associated with translation in time naturally occurs
in the Koopman operator framework and imbues it with
the fundamental group structure. It is interesting that, in
contrast to biological modules responsible for vision, even
the basic issue of finding specific brain structures that are
responsible for perception of time, and thus understand-
ing of dynamics, is still being investigated.

Koopman operator theory has recently emerged as one
of the main candidates for machine learning of dynami-
cal processes. In this paper, we briefly describe its history,
emerging from efforts to extend the methodology used in
quantum mechanics, and describe the current focus, set-
ting it within the new concept of dynamic process repre-
sentation, and connecting along the way to the geomet-
ric dynamical systems theory methods that enable data-
driven discovery of essential elements of the theory, for
example stable and unstable manifolds. What emerges is a
powerful framework for unsupervised learning from small
amounts of data, enabling self-supervised learning that is
muchmore in line with the theory of human learning than
the machine learning methods of the second wave.

History
Driven by the success of the operator-based framework in
quantum theory, Bernard Koopman proposed in his 1931
paper [Koo31] to treat classical mechanics in a similar way,
using the spectral properties of the composition operator
associated with dynamical system evolution. The work, re-
stricted to Hamiltonian dynamical systems, did not attract
much attention originally, as evidenced by the fact that be-
tween 1931 and 1990, the Koopman paper [Koo31] was
cited 100 times, according to Google Scholar. This can
be attributed largely to the major success of the geomet-
ric picture of dynamical systems theory in its state-space
realization advocated by Poincaré. In fact, with Lorenz’s
discovery of a strange attractor in 1963, the dynamical sys-
tems community turned to studying dissipative systems
and much progress has been made since. Within the cur-
rent research in dynamical systems, some of the crucial
roadblocks are associated with high-dimensionality of the
problems and necessity of understanding behavior glob-
ally (away from the attractors) in the state space. However,
the weaknesses of the geometric approach are related ex-
actly to its locality—as it often relies on perturbative ex-
pansions around a known geometrical object—and low-
dimensionality, as it is hard to make progress in higher
dimensional systems using geometry tools.

Out of today’s 1200+ citations of Koopman’s original
work, [Koo31], about 80% come from the last 20 years. It
was only in the 1990s and 2000s that potential for wider
applications of the Koopman operator-theoretic approach
has been realized [Mez94, Mez05, RMB+09]. In the past
decade the trend of applications of this approach has con-
tinued. This is partially due to the fact that strong connec-
tions have been made between the spectral properties of
the Koopman operator for dissipative systems and the ge-
ometry of the state space. In fact, the hallmark of the work
on the operator-theoretic approach in the last two decades
is the linkage between geometrical properties of dynami-
cal systems—whose study has been advocated and strongly
developed by Poincaré and followers—with the geomet-
rical properties of the level sets of Koopman eigenfunc-
tions [Mez94,MM12,MMM13]. The operator-theoretic ap-
proach has been shown capable of detecting objects of key
importance in geometric study, such as invariant sets, but
doing so globally, as opposed to locally as in the geomet-
ric approach. It also provides an opportunity for study of
high-dimensional evolution equations in terms of dynam-
ical systems concepts [Mez05, RMB+09] via a spectral de-
composition, and links with associated numerical meth-
ods for such evolution equations [Sch10,RMB+09].

Even the early work in [Mez94] and its continua-
tion in [MB04, Mez05, RMB+09] already led to the re-
alization that spectral properties, and thus geometri-
cal properties, can be learned from data, thus initiat-
ing a strong connection that is forming today between
machine learning and dynamical systems communities
[LDBK17, YKH19, LKB18, TKY17]. The key notion driv-
ing these developments is that of representation of a—
possibly nonlinear—dynamical system as a linear opera-
tor on a typically infinite-dimensional space of functions.
This then leads to search for linear, finite-dimensional in-
variant subspaces. In this paper I formalize the concept of
dynamical system representation enabling the study of finite-
dimensional linear and nonlinear representations, learn-
ing, and the geometry of state-space partitions.

Dynamical System Representations
State space vs. observables space. It is customary, since
Poincaré, to start the discussion of mathematics of dynam-
ical systems with the notion of the state space, which al-
ready includes a numerical representation of‘ the state of a
system. However, to set the operator-theoretic approach
properly, it is useful to start with just the primitive notion
of a set 𝑀 of (nonnumerically described) states of a given
system. Elements 𝐦 ∈ 𝑀 are abstract to start with, and
the dynamics is given by a rule that assigns 𝐦𝑡 ∈ 𝑀 to
𝐦 for any element 𝑡 of the time set 𝒯. The time set can
be ℝ, ℤ, but more complicated cases such as 𝒯 = ℤ2 can
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be considered as well.1 As we are interested in framing
the process of learning and modeling dynamics from data
in the Koopman (composition) operator framework, we
begin by describing the basic notions of representation of
dynamics using functions.
Discrete dynamical systems. The set 𝒪 of all complex
functions 𝑓 ∶ 𝑀 → ℂ is called the space of observables.
It is a linear vector space over the field of complex num-
bers. A discrete deterministic dynamical system 𝑇 on𝑀 is
a map 𝑀 → 𝑀, and the time set is 𝒯 = ℤ. For𝐦 ∈ 𝑀 the
iteration of the map 𝐦 is defined by 𝐦′ = 𝑇𝐦. Any such
map defines an operator 𝑈 ∶ 𝒪 → 𝒪 by

𝑈𝑓(𝐦) = 𝑓 ∘ 𝑇(𝐦) = 𝑓(𝑇𝐦). (1)

The operator 𝑈 is linear, as composition distributes over
addition:

𝑈(𝑐1𝑓1 + 𝑐2𝑓2)(𝐦) = (𝑐1𝑓1 + 𝑐2𝑓2)(𝑇𝐦)
= 𝑐1𝑓1(𝑇𝐦) + 𝑐2𝑓2(𝑇𝐦)
= 𝑐1𝑈𝑓1(𝐦) + 𝑐2𝑈𝑓2(𝐦). (2)

Finite-dimensional representations. Ultimately, data is
about numbers. We can understand a lot about the map 𝑇
on𝑀 by collecting data on observables. To formalize this,
we need the notion of representation.

Definition 1. A finite-dimensional representation (𝐟, 𝐅) of
𝑇 in 𝒪 is a set of functions 𝐟 = (𝑓1, ..., 𝑓𝑛) and a mapping 𝐅
such that

𝑈𝐟(𝐦) = 𝐟(𝑇𝐦) = 𝐅(𝐟(𝐦)), (3)

where 𝐅 ∶ ℂ𝑛 → ℂ𝑛 and 𝑛 is the dimension of the repre-
sentation. If 𝐟 ∶ 𝑀 → ℝ𝑛 is a real set of functions, then the
representation is real.

The image of 𝑀 in ℂ𝑛 under 𝐟—the space 𝐟(𝑀)—is
called the state space.2 The simplest examples of state
spaces are Euclidean spaces of 𝑛-tuples of real numbers
ℝ𝑛. Consider 𝐟 = (𝑓1, ..., 𝑓𝑛) such that 𝑓𝑗(𝐦) = 𝑚𝑗 ,𝐦 =
(𝑚1, ..., 𝑚𝑛) ∈ ℝ𝑛. Any mapping 𝐦′ = 𝑇𝐦 on ℝ𝑛 has a
real representation 𝐟′ = 𝐅(𝐟), where 𝐅𝑗(𝐟) = 𝑓𝑗(𝑇𝐦). The
representation (3) is called linear provided 𝐅 ∶ ℂ𝑛 → ℂ𝑛 is
a linear mapping. Finite-dimensional representations are
key to learning dynamical systems from data.

Example 2. Let 𝑀 = 𝕋2, the two-dimensional torus, and
let 𝑇 ∶ 𝕋2 → 𝕋2 be the mapping that translates points on
the torus by angle 𝜔1 in the direction of rotation around

1For example, we could be given two transformations 𝑇, 𝑆 on M and the dynam-
ics starting from an initial point𝐦 can be given by sequences of transformations
𝑆𝑛2𝑇𝑛1 , where (𝑛1, 𝑛2) ∈ ℤ2. This case, that is of interest in control theory,
will not be expanded on further here.
2We might be used to thinking about𝑀 itself as the “state space.” But the orig-
inal notion in Poincaré’s work refers to 𝐟(𝑀), where 𝐟 is comprised of observ-
ables that are positions and momenta of a mechanical system. Perhaps 𝑀 can
be called the “abstract state space.”

the symmetry axis, and 𝜔2 in the direction of the cross-
sectional circle.3 Consider the representation

𝐟 = (𝑧1, 𝑧2)𝑇 ,
𝐅(𝑧1, 𝑧2) = (𝑒𝑖𝜔1𝑧1, 𝑒𝑖𝜔2𝑧2), (4)

where 𝑧1 = 𝑒𝑖𝜃1 and 𝑧2 = 𝑒𝑖𝜃2 , 𝜃1 being the angle along
the rotational symmetry and 𝜃2 the angle along the cross-
sectional circle. We have

𝐟′ = 𝐴𝐟, (5)

where 𝐴 is a diagonal matrix with (𝑒𝑖𝜔1 , 𝑒𝑖𝜔2) as diagonal
elements. Thus, (𝐟, 𝐅) is a complex, linear representation
of 𝑇. Note that 𝜃′1 = 𝜃1 + 𝜔1, 𝜃′2 = 𝜃1 + 𝜔1 is not a linear
representation.

Mathematically, one of the key questions in this con-
text is whether a finite-dimensional representation exists.
Namely, a set of functions 𝐟 ∶ 𝑀 → ℂ does not necessarily
satisfy 𝐟 ∘ 𝑇 = 𝐅(𝐟) for any 𝐅. If one considers trajectories
{𝐦𝑗 , 𝑗 ∈ ℤ} of 𝑇, then it is easy to see that there isn’t neces-
sarily an 𝐅 ∶ ℂ{𝐽,−∞} → ℂ, {𝐽, −∞} = {𝐽, 𝐽 − 1, ..., 𝐽 − 𝑁, ...},
such that

𝐟(𝐦𝐽+1) = 𝐟 ∘ 𝑇(𝐦𝐽) = 𝐅(𝐟({𝐦𝑗 , 𝑗 ≤ 𝐽})), (6)

i.e., the next value of 𝐟 cannot always be obtained uniquely
even if we know the whole history of the evolution of 𝐟 on
the trajectory. The representation relationship 𝐟 ∘ 𝑇 = 𝐅(𝐟)
requires that the next value of 𝐟 is uniquely determined
by the current value. This is the Markov property. If a
representation does not satisfy the Markov property, but
its dynamics depends only on a finite number of previous
trajectory points, i.e.,

𝐟(𝐦𝐽+1) = 𝐟 ∘ 𝑇(𝐦𝐽)
= 𝐅(𝐟({𝐦𝑗 , 𝐽 − 𝑁 ≤ 𝑗 ≤ 𝐽}))
= 𝐅(𝐟(𝐦𝐽), 𝐟(𝐦𝐽−1), ..., 𝐟(𝐦𝐽−𝑁))
= 𝐅(𝐟(𝑇𝑁𝐦𝐽−𝑁), 𝐟(𝑇𝑁−1𝐦𝐽−𝑁),

..., 𝐟(𝐦𝐽−𝑁)), (7)

then the so-called time-delay embedding can be used to
make it Markovian: Let

̃𝐟(𝐦) = (𝐟, 𝐟 ∘ 𝑇, ..., 𝐟 ∘ 𝑇𝑁)(𝐦) = (𝐟, 𝐟1, ..., 𝐟𝑁)(𝐦). (8)

Then, setting𝐦 = 𝐦𝐽−𝑁
̃𝐟′ = (𝐟 ∘ 𝑇(𝐦), 𝐟 ∘ 𝑇2(𝐦), ..., 𝐟 ∘ 𝑇𝑁+1(𝐦))
= (𝐟1(𝐦), 𝐟2(𝐦), ..., 𝐟𝑁(𝐦), 𝐟 ∘ 𝑇𝑁+1(𝐦))
= (𝐟1(𝐦), 𝐟2(𝐦), ..., 𝐟𝑁(𝐦), 𝐟(𝐦𝑁+1))
= (𝐟1(𝐦), 𝐟2(𝐦), ..., 𝐟𝑁(𝐦),

𝐅(𝐟(𝑇𝑁𝐦), 𝐟(𝑇𝑁−1𝐦), ..., 𝐟(𝐦)))
= 𝐅̃( ̃𝐟). (9)

3I intentionally do not start with the notation 𝜃′1 = 𝜃1 + 𝜔1, 𝜃′2 = 𝜃1 + 𝜔1
to emphasize that we can start with abstract points on the torus and physically
describe the transformation on it.
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Physically, there is the additional problem of whether
experimental observations can provide all the informa-
tion necessary to describe the finite-dimensional represen-
tation. Historically, the analysis of the problem of finite
representations has often been considered in the context
of the Mori-Zwanzig theory that has close links to Koop-
man operator theory. We discuss this connection later in
the paper.
Representations and conjugacies. There are representa-
tions that are capable of separating points on 𝑀. We call
these faithful.

Definition 3. A representation (𝐟, 𝐅) is called faithful pro-
vided 𝐟 ∶ 𝑀 → 𝐟(𝑀) is injective:

(i) 𝐟(𝐦) = 𝐟(𝐧) ⇒ 𝐦 = 𝐧,or equivalently
(ii) 𝐦 ≠ 𝐧 ⇒ 𝐟(𝐦) ≠ 𝐟(𝐧) ∀𝐦, 𝐧 ∈ 𝑀.

In terms of representations, the Takens embedding the-
orem shows that a faithful representation of dynamics on
an𝑚-dimensional Riemannian manifold can be obtained
by using a sufficiently large set of time-delayed observables
for generic pairs of smooth real functions and dynamical
systems (𝑓, 𝑇).
Theorem 4 (Takens). Let𝑀 be a compact Riemannian mani-
fold of dimension𝑚, 𝑇 ∶ 𝑀 → 𝑀 a 𝐶𝑟, 𝑟 ≥ 1, diffeomorphism,
and 𝑓 ∶ 𝑀 → ℝ a 𝐶𝑟 function. For generic (𝑓, 𝑇) the map
̃𝐟 ∶ 𝑀 → ℝ2𝑚+1 given componentwise by

̃𝐟(𝑥) = (𝑓, 𝑓 ∘ 𝑇, 𝑓 ∘ 𝑇2, ..., 𝑓 ∘ 𝑇2𝑚)
is an embedding and ̃𝐟(𝑀) is a compact submanifold of ℝ2𝑚+1.
Thus, for generic (𝑓, 𝑇), ( ̃𝐟, 𝐅) is a faithful real representation
of 𝑇.

Time-delayed observables have been used in approxi-
mations of Koopman operators since [MB04].

A representationmight provide redundant information:
for example, it might contain two functions 𝑓𝑗 and 𝑓𝑘 such
that 𝑓𝑗 = 𝐹(𝑓𝑘) for some function 𝐹. If it does not, it is
called efficient.

Definition 5. An 𝑛-dimensional faithful representation is
called efficient provided there are no 𝐻 ∶ ℂ𝑛−1 → ℂ and
𝑗 ∈ {1, ..., 𝑛} such that

𝑓𝑗 = 𝐻(𝑓1, ..., 𝑓𝑗−1, 𝑓𝑗+1, ..., 𝑓𝑛). (10)

An 𝑛-dimensional efficient faithful representation is called
minimal provided any other𝑚-dimensional efficient faith-
ful representation satisfies 𝑚 ≥ 𝑛.
Example 6. In Example 2 (𝐟, 𝐅) is a minimal, faithful, effi-
cient representation of 𝑇.

It is clear that all minimal efficient faithful representa-
tions have the same dimension. Thus, the dimension of
the system can be defined as the dimension of its minimal

efficient representation.4 Additionally, different faithful
representations of the underlying mapping 𝑇 play nicely
with each other as they are related by a conjugacy.

Proposition 7. Let (𝐟, 𝐅), (𝐠, 𝐆) be two different faithful 𝑛-
dimensional representations. Then there is a bijection 𝐡 ∶
𝐠(𝑀) → 𝐟(𝑀) such that

𝐟 = 𝐡(𝐠), (11)

and 𝐡 is a conjugacy of representations, i.e.,

𝐡(𝐆(𝐠)) = 𝐅(𝐡(𝐠)). (12)

Proof. Since 𝐟 and 𝐠 are faithful, 𝐟(𝐦) and 𝐠(𝐦) are unique
for every 𝐦 ∈ 𝑀, and thus for any 𝐠 ∈ 𝐠(𝑀) there is a
unique 𝐟 ∈ 𝐟(𝑀). The resulting mapping 𝐡 ∶ 𝐠(𝑀) → 𝐟(𝑀)
is a bijection. Further, we know

𝐡(𝐠 ∘ 𝑇) = 𝐡(𝐆(𝐠)). (13)

Now,

𝐡(𝐠 ∘ 𝑇) = 𝐟 ∘ 𝑇
= 𝐅(𝐟)
= 𝐅(𝐡(𝐠)), (14)

and thus
𝐡(𝐆(𝐠)) = 𝐅(𝐡(𝐠)). (15)

□

The concept of conjugacy has classically been used in
dynamical systems for local linearization theorems. Since
the Koopman operator description is global, extensions of
the local theory are needed (see [Mez20] and the preceding
Lan and Mezić (2013) reference therein).

Faithful representations are capable of describing all of
the dynamics of 𝑇. However, that dynamics is often high
dimensional and has components that are irrelevant for
understanding the problem at hand. In this context, the
notion of the reduced representation is useful.

Definition 8. A representation (𝐟, 𝐅) is called reduced pro-
vided it is not faithful.

Note that, by the definition of the concept of represen-
tation, even for reduced representations we have

𝐟(𝐦) = 𝐟(𝐧) ⇒ 𝐟(𝑇𝐦) = 𝐟(𝑇𝐧) ∀𝐦,𝐧 ∈ 𝑀,
since, if 𝐟(𝐦) = 𝐟(𝐧), then

𝐟(𝑇𝐦) = 𝐅(𝐟(𝐦)) = 𝐅(𝐟(𝐧)) = 𝐟(𝑇𝐧). (16)

We note here the hierarchy of the introduced forms of rep-
resentations: a faithful representation might not be effi-
cient. However, an efficient representation is “minimally”
faithful. A reduced representation is not faithful.

4The underlying space𝑀 can have a fractal dimension—e.g., in the case of the
Lorenz attractor—but the representation is integer dimensional.
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The concept of reduced representations is exemplified
in the notion of factors in ergodic theory, for which we
need to equip𝑀 with a measure 𝜇.
Definition 9. Let 𝑇 ∶ 𝑀 → 𝑀 be a measure-preserving
dynamical system with respect to a measure 𝜇 on𝑀. Then
a map 𝑆 ∶ 𝑁 → 𝑁 is a factor of 𝑇 provided it preserves
the measure 𝜈 = 𝜇 ∘ ℎ−1 on 𝑁, where ℎ ∶ 𝑀 → 𝑁 is a
measurable mapping such that ℎ(𝑇(𝐦)) = 𝑆ℎ(𝐦).

Let (𝐟, 𝐅) be a reduced representation of 𝑇 ∶ 𝑀 → 𝑀,
where the components of 𝐟 are measurable functions on
𝑀. Then we have the following.

Proposition 10. The dynamical system 𝐟′ = 𝐅(𝐟) on 𝐟(𝑀)
equipped with the measure 𝜈 defined by 𝜈(𝐴) = 𝜇(𝐟−1(𝐴)) is a
factor of 𝑇.
Proof. We have

𝐟(𝑇𝐦) = 𝐅(𝐟(𝐦)). (17)

Since 𝐟 is measurable and 𝜈(𝐴) = 𝜇(𝐟−1(𝐴)), 𝐅 is a factor of
𝑇. □

In the context of factors, 𝐟 is required to be measurable,
in contrast with the notion of semiconjugacy in topolog-
ical dynamics, where the representation is required to be
continuous.

Proposition 11. Let 𝐟 ∶ 𝑀 → 𝐟(𝑀) be a continuous (proper)
surjection, i.e., there are two points in 𝑀 that map to a single
point in 𝐟(𝑀), and let (𝐟, 𝐅) be a (nonfaithful) representation.
Then 𝐅 is semiconjugate to 𝑇.
Proof. We again have

𝐟(𝑇𝐦) = 𝐅(𝐟(𝐦)), (18)

and thus 𝐅 and 𝑇 are semiconjugate. □
Both of these concepts—factors and semiconjugacies—

are key in model reduction of dynamical systems
[Mez05,Mez20]. In the larger context of machine learning,
factors and semiconjugacies—that, as shown below, can
be realized using eigenfunctions—play the role of autoen-
coders, helping reduce the dimension and reduce “noise”
in the dynamic dataset. We discuss continuous time evo-
lutions next.
Representations of continuous time evolution. In the
case of continuous time 𝑡 ∈ ℝ, the evolution on 𝑀 con-
sists of a group of transformations 𝑇 𝑡, satisfying

𝑇 𝑡+𝑠𝐦 = 𝑇 𝑡𝑇𝑠𝐦∀𝑡, 𝑠 ∈ ℝ. (19)

Any such evolution group defines an operator group 𝑈𝑡 ∶
𝒪 → 𝒪 by

𝑈𝑡𝑓(𝐦) = 𝑓(𝑇 𝑡𝐦), 𝑓 ∈ 𝑂. (20)

A representation (𝐟, 𝐅𝑡) of 𝑇 𝑡 then consists of a set of real
or complex functions 𝐟 and a group of transformations 𝐅𝑡
that satisfy

𝐟(𝑇 𝑡𝐦) = 𝐅𝑡(𝐟(𝐦)). (21)

For fixed 𝜏, 𝑈𝜏 is a linear composition operator associ-
ated with 𝑇𝜏.

Definition 12. A representation (𝐟, 𝐅𝑡) is called ordinary
differential if it is finite and

𝐯(𝐦) = 𝑑[𝑈𝑡𝐟(𝐦)]
𝑑𝑡 = lim

𝑡→0
𝑈𝑡𝐟(𝐦) − 𝐟(𝐦)

𝑡

= lim
𝑡→0

𝐅𝑡(𝐟(𝐦)) − 𝐟(𝐦)
𝑡 (22)

exists. In this case, the evolution is represented by a finite
set of ordinary differential equations

̇𝐟 = 𝐯(𝐟). (23)

Example 13. Consider the set of all the states 𝐦 of
a mass-spring system, and the real representation 𝐟 =
(𝑥(𝐦), 𝑝(𝐦)), where 𝑥 is a numerical function that rep-
resents the deviation of the mass position from the un-
stretched length of the spring and 𝑝 is the linear momen-
tum, 𝑝 = 𝗆𝑣, where 𝗆 is the mass parameter, assumed
constant, and 𝑣 is an observable representing change of 𝑥
with time 𝑡. Derivatives with respect to time are labeled by
̇(). Then

̇𝑥 = 𝑝/𝗆,
̇𝑝 = −𝑘𝑥 (24)

is a two-dimensional, faithful, efficient, ordinary differen-
tial representation. Setting 𝜔2 = 𝑘/𝑚, 𝑧 = 𝑥 + 𝑖𝑝, we have
a one-dimensional, faithful, efficient, minimal representa-
tion

̇𝑧 = −𝑖𝜔𝑧. (25)

On the other hand, using the energy observable 𝐸 =
𝑝2/2𝑚+𝑘𝑥2/2, we obtain a one-dimensional, real reduced
representation

̇𝐸 = 0. (26)

As the next example shows, simple representations can
exist even for strange𝑀.

Example 14 (Lorenz representation). Let 𝑀 be the
Lorenz attractor, which is a subset of ℝ3. Let 𝑓(𝐦) =
(𝑥(𝐦), 𝑦(𝐦), 𝑧(𝐦)), where𝑀 is viewed as embedded in ℝ3

and (𝑥(𝐦), 𝑦(𝐦), 𝑧(𝐦)), 𝐦 ∈ 𝑀, are projections of 𝐦 on
the 𝑥, 𝑦, 𝑧 axes. Then

̇𝑥 = 𝜎(𝑦 − 𝑥),
̇𝑦 = 𝑥(𝜌 − 𝑧) − 𝑦,
̇𝑧 = 𝑥𝑦 − 𝛽𝑧 (27)

is a 3-dimensional efficient ordinary differential equation
representation. Note that the underlying set 𝑀 is fractal,
and yet the dynamics on it possesses a differential represen-
tation. It is of interest to note that the ordinary differential
equations (27) are valid off the set𝑀 when it is viewed as
embedded in ℝ3, but from the current point of view, the
representation itself is only valid when restricted to𝑀.
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As far as the full dynamic process the Lorenz represen-
tation is supposed to represent, it is reduced and is in fact
inexact: the dynamics it models is that of a Boussinesq ap-
proximation of thermal convection dynamics, reduced by
truncating Fourier series expansion of the solution.

Remark 15. In the case where the representation of 𝑇 is
not finite, and thus involves a field of observables, e.g., 𝐟 ∈
𝐿2(𝑃) for some continuous space 𝑃 (an example is 𝑃 = ℝ),
we speak of a field representation. The scalar vorticity field

𝜔(𝐱), 𝐱 = (𝑥, 𝑦) ∈ 𝐴 ⊂ ℝ2, (28)

of a two-dimensional, incompressible, inviscid fluid satis-
fies the equation

𝜔̇ = 𝒩𝜔, (29)

where𝒩 is a nonlinear operator.

Representations for control systems. The relationship
between Koopman operator theory and control theory has
been explored intensely over the last decade [MMS20].
Control systems in discrete time are defined on the prod-
uct space𝑀 × 𝑁,

𝐦′ = 𝑇(𝐦,𝐧),
𝐧′ = 𝑊(𝐧), (30)

where 𝐦 ∈ 𝑀,𝐧 ∈ 𝑁. The system (30) is a skew-product
system. The 𝑁 system is the control system. Physically,
the assumption is that the 𝑁 system is separated from the
𝑀 system, and it possesses its own internal dynamics de-
scribed by 𝑊 . A simple additive, linear structure for the
representation is obtained if we can find 𝐟 ∶ 𝑀 → ℂ and
𝐮 ∶ 𝑁 → ℂ such that

𝐟′ = 𝐴𝐟 + 𝐵𝐮. (31)

Note that 𝐮 is physically the input to the system. Feedback
relationship of the type

𝐮 = 𝐇(𝐟) (32)

couples the two systems.
Representations and data. In general, it is not easy to find
faithful representations, and their existence has to be vali-
dated experimentally. Namely, for a finite set of functions
to comprise a representation, equation (16) needs to hold
for every 𝐦,𝐧 ∈ 𝑀. It is also clear that such validation is
only possible for a finite set of points𝐦,𝐧 ∈ 𝑀, and thus
there is always uncertainty present. It is easier to show that
a representation is not faithful. For example, consider an
objectmoving along a straight line, observed at time 0. It is
impossible to predict where it will be at some time 𝜏 later
if we do not know its momentum 𝑝. Thus, the represen-
tation that includes only the observable 𝑥 (we could call
it Galileo’s) that measures the position along the straight
line is not faithful. In contrast, the representation (𝑥, 𝑝)
that contains both the position and momentum observ-
ables is faithful (as long as the object does not interact

with any others and thus proceeds moving with constant
momentum). This is Newton’s representation, and it leads
to ordinary differential equations ̇𝑥 = 𝑝/𝑚, ̇𝑝 = 0.

Another aspect of representation that is important is its
accuracy. Namely, a set of functions 𝐟 ∶ 𝑀 → ℝ𝑚 might be
such that |𝐟(𝑇𝐦) − 𝐅(𝐦)| ≤ 𝜖 for some 𝜖 that is small with
respect to the average value of 𝐟. This was the case, for ex-
ample, with Newton’s representation of the motion under
the law of gravity, where the orbit of planet Mercury, the
closest to the sun and thus experiencing the largest force
of all planets, has a small but measurable deviation from
the motion predicted by the inverse-square law. This was
rectified by Einstein’s geodesic representation. But there
are measurable deviations of motion of galaxies from Ein-
stein’s representation, too. Like faithfulness, accuracy of
representation is also measurable only up to experimental
uncertainty.
Representations and geometry of state-space partitions.
The key connection between the notion of representa-
tions and geometrical objects associated with a dynamical
system—for example invariant sets—is that of a partition.
The collection of disjoint sets 𝐴𝛼, 𝛼 ∈ ℂ, forms a partition
𝜁 of𝑀 if and only if

⋃
𝛼∈ℂ

𝐴𝛼 = 𝑀. (33)

The partition 𝜁𝑓 induced by an observable 𝑓 is defined by

𝜁𝑓 = {𝐵𝑓𝛼 ⊆ 𝑀|𝐵𝑓𝛼 = {𝐦 ∈ 𝑀|𝑓(𝐦) = 𝛼, 𝛼 ∈ ℂ}}, (34)

i.e., the sets 𝐵𝑓𝛼 are level sets of 𝑓 on 𝑀, indexed over val-
ues 𝛼 in the image of 𝑓. The product ∨ of two partitions is
defined by

𝜁 ∨ 𝜉 = {𝐴 ∩ 𝐵|𝐴 ∈ 𝜁, 𝐵 ∈ 𝜉}. (35)

The finest partition 𝜋 is the partition into individual ele-
ments of the set𝑀.

Proposition 16. A representation (𝐟, 𝐅), where 𝐟 = (𝑓1, ..., 𝑓𝑛),
is faithful if and only if the partition

𝜁𝐟 = ⋁
𝑗=1,...,𝑛

𝜁𝑓𝑗 (36)

is the finest partition 𝜋.

Proof. Assume (𝐟, 𝐅) is faithful and 𝜋 ≠ ⋁𝑗=1,...,𝑛 𝜁𝑓𝑗 . Then
there are two points in𝑀 that have the same values of 𝐟 as-
sociated with them andwe get a contradiction. Conversely,
assume that 𝜋 = ⋁𝑗=1,...,𝑛 𝜁𝑓𝑗 . Then, the partition is faith-
ful as every point of𝑀 gets assigned a unique set of values
of observables 𝑓1, ..., 𝑓𝑛. □
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Eigenfunctions and linear representations. An eigen-
function 𝜙 of the composition operator associated with 𝑇
and 𝑇 𝑡, respectively, satisfies

𝑈𝜙 = 𝜆𝜙, (37)

𝑈𝑡𝜙 = 𝑒𝜆𝑡𝜙, (38)

where 𝜆 is the associated eigenvalue.5 In discrete time, let
𝐅(𝜙) = 𝜆𝜙. Thus, (𝜙, 𝐅) is a (possibly reduced) representa-
tion of 𝑇.
Remark 17. Note that, at this stage, we do not put a con-
straint on 𝜙 being in a specific functional space. This is
intentional, as the eigenfunction definition does not need
the definition of the space the function lives in. However,
when we describe spectral expansions below, the precise
definitions of such functional spaces are needed and will
be given.

More generally, let (𝐟, 𝐅) be an𝑚-dimensional represen-
tation of 𝑇 such that 𝐅(𝐟) = 𝐴𝐟, where 𝐴 is an𝑚×𝑚matrix.
We denote such a linear representation by (𝐟, 𝐴). Since we
have

𝑈𝐟(𝐦) = 𝐟 ∘ 𝑇(𝐦) = 𝐴𝐟(𝐦), (39)

we call 𝐴 an eigenmatrix of 𝑈. A similar definition holds
for the continuous-time case, where we require

𝑈𝑡𝐟(𝐦) = 𝐟 ∘ 𝑇 𝑡(𝐦) = 𝑒𝐴𝑡𝐟(𝐦) (40)

for 𝐴 to be an eigenmatrix of 𝑈𝑡. In the differentiable case,
we get

𝑑[𝑈𝑡𝐟(𝐦)]
𝑑𝑡 |𝑡=0 = 𝐴𝐟(𝐦). (41)

Assume that 𝐴 has distinct eigenvalues. Let ⟨⋅, ⋅⟩ denote
the standard complex inner product on ℂ𝑚, defined by

⟨𝐯,𝐰⟩ = ∑
𝑖
𝐯𝑖 ⋅ 𝐰𝑐

𝑖 .

Then we get the following.

Proposition 18. The eigenvalues of 𝐴, 𝜆1, ..., 𝜆𝑚, are eigen-
values of 𝑈, and the associated eigenfunctions of 𝑈 are given
by

𝜙𝑗 = ⟨𝐟,𝐰𝑗⟩ , (42)

where 𝑤𝑗 is the eigenvector of 𝐴𝑇 .
Proof. In discrete time, we have

𝑈𝜙𝑗(𝐦) = 𝜙𝑗(𝑇(𝐦)) = ⟨𝐟(𝑇(𝐦)),𝐰𝑗⟩
= ⟨𝐴𝐟(𝐦),𝐰𝑗⟩ = ⟨𝐟(𝐦), 𝐴𝑇𝐰𝑗⟩
= ⟨𝐟(𝐦), 𝜆𝑐𝑗𝐰𝑗⟩ = 𝜆𝑗 ⟨𝐟(𝐦),𝐰𝑗⟩
= 𝜆𝑗𝜙𝑗(𝐦).

The proof for continuous time proceeds in a similar way.
□

5Note that for the time-one map derived from a flow 𝑇𝑡 by 𝑇1 = 𝑇, and the as-
sociated operator 𝑈 = 𝑈1, the eigenvalue of 𝑈 corresponding to the eigenvalue
𝜆 of 𝑈𝑡 is 𝑒𝜆, not 𝜆. The definitions above are not for flows and maps that are
related in that sense.

Example 19. The system ̇𝑥 = 𝑓(𝑥), 𝑥 ∈ ℝ1, 𝑓 ∈ 𝐶1, always
has a smooth eigenfunction 𝜙 satisfying ̇𝜙 = 𝜆𝜙 provided
𝜙 = exp(𝜆∫𝑥

𝑥0 𝑓
−1(𝑥)𝑑𝑥) ∈ 𝐶1 for some 𝜆 < ∞. The repre-

sentation (𝜙, 𝐆𝑡) is linear, where 𝐆𝑡(𝜙) = 𝑒𝜆𝑡𝜙 and ̇𝜙 = 𝜆𝜙.

Perhaps the most important and simplest representa-
tion, if it exists, is the eigenfunction representation, given
in discrete time by

𝐟(𝑇𝐦) = Λ(𝐟(𝐦)), (43)

where Λ is a diagonal 𝑚 × 𝑚 matrix and the diagonal ele-
mentsΛ𝑗𝑗 = 𝜆𝑗 , 𝑗 = 1, ..., 𝑚, are eigenvalues of𝑈, satisfying

𝑈𝑓𝑗 = 𝜆𝑗𝑓𝑗 , (44)

where 𝑓𝑗 is the eigenfunction of 𝑈 associated with the
eigenvalue 𝜆𝑗.

Let 𝐴 be an efficient faithful representation. Let 𝑃 be a
diagonalizing matrix such that 𝑃−1𝐴𝑃 = Λ, where Λ is a
diagonal matrix, and let 𝜙 = (𝜙1, ..., 𝜙𝑚). Then

𝜙′ = 𝑃−1𝐟′ = 𝑃−1𝐴𝐟 = 𝑃−1𝐴𝑃𝜙 = Λ𝜙, (45)

and (𝜙, Λ) is a linear representation conjugate to (𝐟, 𝐴).
This is of interest because it leads to the following corol-
lary.

Corollary 20. For any linear diagonalizable finite-dimen-
sional representation (𝐟, 𝐅) (respectively, (𝐟, 𝐅𝑡)) of 𝑇 (re-
spectively, 𝑇 𝑡), 𝐟 is in the span of 𝑛 eigenfunctions 𝜙 =
(𝜙1, 𝜙2, ..., 𝜙𝑛) of 𝑈 (respectively, 𝑈𝑡), where 𝑛 is the dimen-
sion of the representation.

Proposition 21. Consider a linear, diagonalizable, finite-
dimensional representation (𝐟, 𝐅) (respectively, (𝐟, 𝐅𝑡)) of 𝑇 (re-
spectively, 𝑇 𝑡), and another finite-dimensional representation
(𝐠, 𝐆) (respectively, (𝐠, 𝐆𝑡)) of 𝑇 (respectively, 𝑇 𝑡). Let 𝐡 be a
homeomorphism between them, 𝐟 = 𝐡(𝐠). Then 𝐠 = 𝐡−1(𝑃𝜙)
for an invertible matrix 𝑃.

Proof. We have that 𝐟 is in the span of 𝜙, namely

𝐟 = 𝑃𝜙, (46)

and 𝑃 is invertible. Since 𝐠 = 𝐡−1𝐟 = 𝐡−1(𝑃𝜙) we are done.
□

Algebra of eigenfunctions. Eigenfunctions of 𝑈 form an
algebra: Let 𝜙, 𝜓 be eigenfunctions of𝑈 with the associated
eigenvalues 𝜆, 𝛽. Then 𝜙𝜓 is also an eigenfunction, with
eigenvalue 𝜆𝛽:

𝑈𝜙𝜓 = (𝜙𝜓) ∘ 𝑇 = 𝜙 ∘ 𝑇𝜓 ∘ 𝑇 = 𝜆𝛽𝜙𝜓. (47)

Thus, any efficient representation using 𝑛 eigenfunctions,
(𝜙, Λ), leads to many nonefficient representations that can
be obtained by adding products of eigenfunctions into the
set of representation functions.
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Eigenfunctions, Geometry, and Stability
The above discussion leads to the conclusion that eigen-
functions of the Koopman family of operators 𝑈𝑡 are use-
ful in the context of representations—not only is the rep-
resentation consisting of eigenfunctions linear, it is also
fully decoupled, as each eigenfunction 𝜙 satisfies

̇𝜙 = 𝜆𝜙, (48)

where 𝜆 is the associated eigenvalue. In the discrete-time
case, eigenfunctions of 𝑈 similarly satisfy

𝜙′ = 𝜙 ∘ 𝑇 = 𝜆𝜙. (49)

The more general notion is that of a function 𝜙𝑘, such that
for discrete maps (𝑈 − 𝜆𝐼)𝑘𝜙𝑘 = 0, and for continuous
time (𝑈𝑡 − 𝑒𝜆𝑡𝐼)𝑘𝜙𝑘 = 0. Such a function is called a gen-
eralized eigenfunction [Mez20]. Clearly, eigenfunctions
satisfy such equations for 𝑘 = 1. Using generalized eigen-
functions, for a linear representation (𝐟, 𝐴) we get a linear
system

𝜙̇ = 𝐽𝜙, (50)

where 𝐽 is the complex Jordan canonical form matrix and
𝜙 = (𝜙11, ..., 𝜙

𝑘1
1 , ..., 𝜙1𝑙 , ..., 𝜙

𝑘𝑙
𝑙 ), 𝑙 being the number of dis-

tinct eigenvalues and 𝑘𝑗 the algebraic multiplicity of eigen-
value 𝜆𝑗.
Level sets of eigenfunctions and invariant partitions.
Level sets of eigenfunctions provide insight into the geom-
etry of the state space of a dynamical system. Consider an
eigenfunction 𝜙 for 𝑇 ∶ 𝑀 → 𝑀 at eigenvalue 1. It satisfies,
in discrete and continuous time, respectively,

𝜙 ∘ 𝑇(𝐦) = 𝜙(𝐦),
̇𝜙(𝐦) = 0. (51)

Therefore, 𝜙 is invariant under the dynamics of 𝑇, and its
level sets, defined by 𝜙 = 𝑐 for some constant 𝑐 ∈ ℂ, are in-
variant sets. Thus, learning of linear representations from
data enables learning of invariant sets of the underlying
system. The partition 𝜁𝜙 into the level sets of 𝜙 is an ex-
ample of a fixed partition, since for any set 𝐷 ∈ 𝜁𝜙, in dis-
crete time 𝑇𝐷 = 𝐷. The finest such partition is the ergodic
partition that has interesting additional metric properties
[Mez94]. The mapping 𝜙 ∶ 𝑀 → ℂ defines a fixed factor
of 𝑇, whose domain is 𝜙(𝑀) and the dynamics is trivial,
given in discrete time by 𝜙′ = 𝜙.

Example 22. Consider the set of states (positions and an-
gular velocities) 𝐦 ∈ 𝑀 = 𝑆1 × ℝ of a pendulum of mass
𝑚. Let 𝜃 ∈ [0, 2𝜋) and define representation functions
𝜃(𝐦), 𝜔(𝐦) = ̇𝜃(𝐦) ∈ ℝ. We have the ordinary differential
representation

̇𝜃 = 𝜔,
𝜔̇ = −𝑔𝑙 sin 𝜃, (52)

with 𝑔 the acceleration of gravity and 𝑙 the length of the
pendulum. Let

𝐻 = 𝜔2/2 − 𝑔
𝑙 cos(𝜃), (53)

and 𝐻̇ = 0. Thus, the Hamiltonian 𝐻 is an eigenfunction
of the Koopman operator associated with pendulum dy-
namics. Its level sets are invariant. The level sets of the
Hamiltonian for 1 degree of freedom systems form the er-
godic partition, but this is not the case for 𝑁 degrees of
freedom Hamiltonian systems, since, e.g., tori with irra-
tional rotation dynamics can have half the dimension of
the state space.

The eigenfunction 𝜙𝜔 of 𝑇 corresponding to an eigen-
value 𝜆 = 𝑒𝑖𝜔 ≠ 1 on the unit circle yields level sets
that form an invariant partition. Namely if 𝐷 ∈ 𝜁𝜙𝜔 , then
𝑇𝐷 = 𝐸 ∈ 𝜁𝜙𝜔 . If 𝑛𝜔 = 2𝜋𝑚, where 𝑚, 𝑛 ∈ ℤ, then
𝑇𝑛𝐷 = 𝐷 for every 𝐷 ∈ 𝜁𝜙𝜔 . In that case 𝜁𝜙𝜔 is a pe-
riodic partition. The same analysis holds for continuous-
time systems in the case when the eigenvalue is 𝜆 = 𝑖𝜔, on
the imaginary axis. For limit cycling systems, with limit
cycling frequency 𝜔, there exists an eigenfunction 𝜙𝜔, the
level sets of which satisfy

̇𝜙𝜔 = 𝑖𝜔𝜙𝜔. (54)

Such level sets are called isochrons. The notion of general-
ized isochrons in dynamical systems with a toroidal attrac-
tor with diophantine irrational rotation dynamics stems
from further examination of partitions induced by imagi-
nary axis eigenvalues [MM12].

More generally, consider an eigenfunction of 𝑈 that sat-
isfies

𝜙′ = 𝜆𝜙 (55)

with |𝜆| < 1, or an eigenfunction of 𝑈𝑡 that satisfies

̇𝜙 = 𝜆𝜙 (56)

for 𝜆 ∈ ℂ−, the left half-plane (excluding the imaginary
axis). Then necessarily, 𝜙(𝑡) → 0 as 𝑡 → ∞. The level sets
of 𝜙 again form a partition of 𝑀 that is invariant. Namely
the collection of disjoint sets 𝐴𝜙𝛼, 𝛼 ∈ ℂ, such that the sets
𝐴𝜙𝛼 = {𝐦 ∈ 𝑀|𝜙(𝐦) = 𝛼, 𝛼 ∈ ℂ} form a partition of 𝑀,
such that

⋃
𝛼∈ℂ

𝐴𝜙𝛼 = 𝑀,

𝑇 𝑡𝐴𝜙𝛼 = 𝐴𝜙
𝛼𝑒𝜆𝑡 . (57)

The second property indicates the sets 𝐴𝜙𝛼 are elements of
an invariant partition under 𝑇 𝑡. Level sets of Koopman
eigenfunctions always provide us with invariant partitions
of the state space.

Proposition 23. Let 𝜙 be a Koopman eigenfunction of a
continuous-time system 𝐱̇ = 𝐅(𝐱) on 𝑀 ⊂ ℝ𝑛 with the flow
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𝑇 𝑡 ∶ 𝑀 → 𝑀, or of a map 𝑇 ∶ 𝑀 → 𝑀. Then the level sets
𝐴𝜙𝛼 of 𝜙,

𝐴𝜙𝛼 = {𝐱 ∈ 𝑀|𝜙(𝐱) = 𝛼}, (58)

where 𝛼 ∈ ℂ, are elements of the invariant partition 𝜁𝜙 =
{𝐴𝜙𝛼|𝜙(𝐱 ∈ 𝐴𝜙𝛼) = 𝛼}.
Proof. We will do the proof for the continuous-time case.
By definition, 𝜙 satisfies

̇𝜙 = 𝜆𝜙, (59)

where 𝜆 is the eigenvalue associated with 𝜙. Therefore
𝜙(𝑇 𝑡𝐱) = 𝑒𝜆𝑡𝜙(𝐱), (60)

and letting 𝜙(𝐱) = 𝛼, we get 𝜙(𝑇 𝑡𝐱) = 𝑒𝜆𝑡𝛼. Since 𝑒𝜆𝑡𝛼 does
not depend on 𝐱, all the points in the set 𝐴𝜙𝛼 get mapped
into𝐴𝜙𝑒𝜆𝑡𝛼 by𝑇 𝑡, 𝑡 ∈ ℝ, and thus 𝜁𝜙 is an invariant partition.
The proof in the discrete-time case is similar. □

Invariant partitions can be recurrent and nonrecurrent.

Definition 24. A recurrent invariant partition is an invari-
ant partition such that for any set 𝐷 in it there is no 𝜏 such
that 𝑑(𝑇 𝑡𝐷,𝐷) ≥ 𝜖 > 0 for some 𝜖 and all 𝑡 > 𝜏 > 0. Here
𝑑(𝐸, 𝐹) is the Hausdorff distance of sets 𝐸 and 𝐹. An invari-
ant partition that is not recurrent is called nonrecurrent.

In other words, given an 𝜖 > 0, for any set 𝐴 in a recur-
rent partition and for any 𝜏, there is a time 𝑡 > 𝜏 such that
𝑑(𝑇 𝑡𝐴,𝐴) < 𝜖. Fixed and periodic partitions are clearly re-
current. So are partitions associated with an eigenvalue on
the unit circle (discrete time) or imaginary axis (continu-
ous time) where 𝜔 ≠ 2𝜋𝑚/𝑛 for any 𝑚, 𝑛 ∈ ℤ.
Example 25. Consider the system

̇𝑟 = 𝑟(1 − 𝑟2),
̇𝜃 = 𝜔, (61)

where (𝑟, 𝜃) ∈ [0,∞) × 𝑆1. The level sets of the coordinate
function 𝑟 ∶ [0,∞) × 𝑆1 → ℝ comprise an invariant non-
recurrent partition for the system. However, 𝑟 is not an
eigenfunction of the system. If we map every level set of 𝑟
into a single point we obtain the quotient space𝑄 = [0,∞).
However the dynamics “induced” on it by the mapping
𝑟 ∶ 𝑀 → 𝑅 from the state space to 𝑟 is nonlinear. Using
the eigenfunction of the system given by 𝜙 = (𝑟2 − 1)/𝑟2
corresponding to the eigenvalue −2 (which is also the Flo-
quet stability exponent for the limit cycle) we obtain linear
dynamics ̇𝜙 = −2𝜙 on𝑄. The invariant partition ofℝ2 into
level sets of 𝜙 is nonrecurrent. The invariant partition into
level sets of 𝜙𝜔 = 𝑒𝑖2𝜋𝜃 corresponding to eigenvalue 𝜆 = 𝑖𝜔
is recurrent (periodic).

The numerical study of invariant sets and invariant par-
titions using Koopman operator theory was initiated in
[Mez94] for measure-preserving systems, where joint level

sets of time averages of continuous functions—that are el-
ements of the eigenspace of 𝑈 at 1—were used to com-
pute invariant partitions. Figure 1 (from [LM15]) shows
numerical approximation of the ergodic partition of the
so-called standard map on the 2-torus using such time av-
erages (these are a part of the Generalized Laplace Analysis,
the larger computational framework in Koopman operator
theory; see below for more details). We consider the stan-
dard map in the form:

𝑥′ = 𝑥 + 𝑦 + 𝜖 sin(2𝜋𝑥) [mod 1],
𝑦′ = 𝑦 + 𝜖 sin(2𝜋𝑥) [mod 1], (62)

where (𝑥, 𝑦) ∈ [0, 1] × [0, 1] ≡ [0, 1]2. It is an area-
preserving (symplectic) map which exhibits a variety of in-
variant sets, both regular (composed of periodic or quasi-
periodic orbits) and chaotic. These sets evolve in size and
structure as the parameter 𝜖 is varied.

Figure 1. Two-function approximation of the ergodic partition
of the standard map (62).

The above example indicates that joint level sets of sev-
eral (or, in the ergodic partition case, countably infinite)
eigenfunctions also provide invariant partitions. This con-
cept can be used to compute stable, unstable, and center
manifolds [Mez20].

Proposition 26. Let 𝑇 ∶ 𝑀 → 𝑀 have a fixed point at 𝐦.
Let 𝜆1, ..., 𝜆ᵆ be positive real part eigenvalues, let 𝜆ᵆ+1, ..., 𝜆ᵆ+𝑐
be 0 real part eigenvalues, and let 𝜆ᵆ+𝑐+1, ..., 𝜆𝑠 be negative
real part eigenvalues of a linear faithful efficient representation
(𝐱, 𝐴) with 𝐱(𝐦) = 0. Let

𝜙1, ..., 𝜙ᵆ+𝑐+𝑠 (63)

be the (generalized) eigenfunctions of the associated Koopman
operator. Then the joint level set of (generalized) eigenfunctions

𝐿𝑠 = {𝐱 ∈ ℝ𝑛|𝜙1(𝐱) = 0, ..., 𝜙ᵆ+𝑐(𝐱) = 0} (64)
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is the stable subspace 𝐸𝑠,

𝐿𝑐 = {𝐱 ∈ ℝ𝑛|𝜙1(𝐱) = 0, ..., 𝜙ᵆ(𝐱) = 0,
..., 𝜙ᵆ+𝑐+1(𝐱) = 0,
..., 𝜙ᵆ+𝑐+𝑠(𝐱) = 0} (65)

is the center subspace 𝐸𝑐, and

𝐿ᵆ = {𝐱 ∈ ℝ𝑛|𝜙ᵆ+𝑐+1(𝐱) = 0, ..., 𝜙ᵆ+𝑐+𝑠(𝐱) = 0} (66)

is the unstable subspace 𝐸ᵆ.
In turn, 𝐱−1(𝐿𝑠), 𝐱−1(𝐿𝑐), and 𝐱−1(𝐿ᵆ) are the stable subset,

the center subset, and the unstable subset of 𝐦 = 𝐱−1(0), the
fixed point of 𝑇.

Proof. The proof follows directly from Proposition 3.1 in
[Mez20]. □

In the case when the fixed point is stable, the inertial
manifolds can also be computed as joint zero level sets of
a subset of Koopman operator eigenfunctions. Namely,
if one can order eigenvalues by the magnitude of their
real parts, 𝑅𝑒(𝜆1) < 𝑅𝑒(𝜆2) < ⋯ < 𝑅𝑒(𝜆𝑛), then the 𝑚-
dimensional inertial manifold is defined as the joint zero
level set of 𝜙𝑗 , 𝑗 ≥ 𝑚.
Eigenfunctions and stability. Provided we find eigen-
functions that compose a faithful representation, we can
use them to examine stability properties of dynamical sys-
tems.

Theorem 27. Let (𝜙 = (𝜙1, ..., 𝜙𝑛), Λ), where Λ is a di-
agonal matrix, be a faithful representation of 𝑇 𝑡 such that
𝜆𝑗 ∈ ℂ−, 𝑗 = 1, ..., 𝑛, and let 0 ∈ 𝜙(𝑀). Then the point
𝐦 that satisfies 𝜙(𝐦) = 0 is a globally stable fixed point of 𝑇 𝑡.

Proof. Clearly lim𝑡→∞ 𝜙(𝐦0) = 0 for any 𝐦0 ∈ 𝑀.6 But
𝜙(𝑀) contains 0, and the representation is faithful. Thus
assuming lim𝑡→∞ 𝑇 𝑡𝐦0 ≠ 𝐦 leads to a contradiction. □

An analogous statement holds for discrete time 𝑇, and
for more general attractors, with possibly a smaller num-
ber of “stable” eigenfunctions involved—in the case of a
limit cycling system in two dimensions, the limit cycle at-
tractor is the zero level set of a single globally supported
eigenfunction associated with an eigenvalue with a nega-
tive real part, and existence of such an eigenfunction serves
to determine the global stability. The condition of faith-
fulness can be checked near the fixed point or the limit cy-
cle in the case of ordinary differential representations, and
more general attractors can be considered [MMS20].

6Interestingly, this follows directly from the eigenfunction equation 𝜙′ = 𝜆𝜙
and does not require continuity of 𝜙.

Nonlinear Representations
We have discussed linear representations that are based on
finding eigenfunctions of the Koopman operator, and lead
to linear dynamics (reduction of the full Koopman opera-
tor) on a subspace of observables. Finite nonlinear repre-
sentations also lead to a reduction since the space of ob-
servables they operate on is the space of all observables
that are constant on joint level sets of 𝐟—as in that case
knowing 𝐟 leads to knowing 𝐅(𝐟). The following simple
lemma holds.

Lemma 28. The space 𝒪𝐟 of observables that are constant on
joint level sets of 𝐟 is a linear subspace of 𝒪.
Definition 29. A subspace of 𝒪 is said to be generated by
a finite set of functions 𝐟 if it is the subspace 𝒪𝐟 containing
all observables 𝑔(𝐟) ∈ 𝒪.

Corollary 30. A finite-dimensional invariant subspace of 𝑈
spanned by observables in a linear representation of dimension
𝑛 is a span of generalized eigenfunctions. Let (𝐟, 𝐅) be a finite-
dimensional, nonlinear representation. Then the subspace 𝒪𝐟
generated by 𝐟 is an invariant subspace.

Thus, the search for finite-dimensional linear represen-
tations can be reduced to search for spans of generalized
eigenfunctions. The search for nonlinear representations
is the search for invariant subspaces generated by finite
sets of observables. It becomes clear that the eigenvalue-
eigenfunction problem for the Koopman operator of find-
ing 𝜙 and 𝜆 such that

𝑈𝜙 = 𝜙 ∘ 𝑇 = 𝜆𝜙 (67)

is just a particular example of finding solutions of the rep-
resentation eigenproblem for a finite set of functions 𝐟 and a
map 𝐅 that satisfy

𝑈𝐟 = 𝐟 ∘ 𝑇 = 𝐅(𝐟) (68)

in the particular case when 𝐅(𝐟) = 𝐴𝐟, where 𝐴 is an 𝑛 × 𝑛
matrix; 𝐴 is called an eigenmatrix. In the same vein, we
could call 𝐅 an eigenmap.

Nonlinear representations can be reduced to linear rep-
resentations provided a conjugacy exists.

Proposition 31. Assume (𝐟, 𝐅) is an 𝑛-dimensional represen-
tation of 𝑇 and 𝐡 is a conjugacy of (𝐟, 𝐅) to a linear representa-
tion (𝐠, 𝐴). Then 𝐟 is in a subspace of 𝒪 generated by the set of
(generalized) eigenfunctions 𝜙 = (𝜙1, ..., 𝜙𝑛).
Proof. Since 𝐴 is linear, there are eigenfunctions 𝜙 = 𝐶𝐠,
where 𝐶 is an 𝑛 × 𝑛 invertible matrix such that

𝜙′ = 𝜙 ∘ 𝑇 = 𝐽𝜙, (69)

where 𝐽 is the Jordan normal form matrix for 𝐴. Since 𝐡
is a conjugacy, 𝐡(𝐅(𝐟 ∘ 𝑇)) = 𝐴𝐠(𝐡(𝐟 ∘ 𝑇)) and 𝐟 = 𝐡−1𝐠 =
𝐡−1𝐶−1𝜙, proving that 𝐟 are in the invariant subspace gen-
erated by 𝜙. □
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The above result has a profound consequence on the
issue of which systems can be rendered linear, that is in
turn related to spectral properties of 𝑈. We discuss this
next.

The Spectral Triple
So far, we have discussed the eigenvalues and eigenfunc-
tions of the Koopman operator, and their connection to
linear representations. Let 𝑈 act on some Banach space
of observables. Then, the eigenvalues are part of the spec-
trum 𝜎(𝑈), the complement of the residual set 𝜌(𝑈) de-
fined as

𝜌(𝑈) = {𝜆 ∈ ℂ|(𝑈 − 𝜆𝐼)−1exists}. (70)

The operator (𝑈 − 𝜆𝐼)−1 is called the resolvent operator.
The residual set, and thus the spectrum, are dependent on
the functional space on which 𝑈 operates [Mez20]. The
operator 𝑈 is called scalar provided

𝑈 = ∫
𝜍(𝑈)

𝛽𝑑𝐸, (71)

where 𝐸 is a family of spectral projections forming resolu-
tion of the identity, and spectral provided

𝑈 = 𝑆 + 𝑁, (72)

where 𝑆 is scalar and 𝑁 is quasi-nilpotent. Examples of
functional spaces in which Koopman operators are scalar
and spectral are given in [Mez20]. The notion of Koop-
man modes (originally called shape modes when defined
in [Mez05] for themeasure-preserving, on-attractor part of
the dynamics) is given by the following definition.

Definition 32. Let 𝐟 ∈ 𝒪𝑛 be a vector of observables. For
a scalar Koopman operator 𝑈, the Koopman mode of 𝐟
associated with an eigenvalue 𝜆 is given by

𝐬𝜆 = 𝐟𝜆./𝜙, (73)

where ./ is componentwise division, 𝜙 is the unit norm
eigenfunction associated with 𝜆, and

𝐟𝜆 = 𝐟 −∫
𝜍(𝑈)\{𝜆}

𝛽𝑑𝐸(𝐟). (74)

We assume that the dynamical system 𝑇 has a Milnor
attractor 𝒜 such that for every continuous function 𝑔, for
almost every𝐦 ∶ 𝑀 → 𝑀 with respect to an a priori mea-
sure 𝜈 on 𝑀 (without loss of generality as we can replace
𝑀 with the basin of attraction of 𝒜) the limit

𝑔∗(𝐦) = lim
𝑛→∞

1
𝑛

𝑛−1
∑
𝑖=0

𝑈 𝑖𝑔(𝐦) (75)

exists. This is the case, e.g., for smooth systems on subsets
of ℝ𝑛 with a Sinai-Bowen-Ruelle (or physical) measure 𝜇,
where 𝜈 is the Lebesgue measure. Let 𝐠(𝐳,𝐦) be a field
of observables indexed by the field variable 𝐳 (e.g., 𝐠(𝐳,𝐦)
could be temperature at spatial position 𝐳when the system

is at 𝐦 ∈ 𝑀). The spectral expansion of the action of 𝑈 on
𝐠 in 𝒪 = 𝐿2(𝜇) is given by [Mez05]

𝑈𝐠(𝐳,𝐦) = 𝐠∗(𝐳,𝐦)

+
𝑘
∑
𝑗=1

exp(𝑖𝜔𝑗)𝜙𝑗(𝐦)𝐬𝑗(𝐳)

+ ∫
1

0
exp(𝑖2𝜋𝛼)𝑑𝐸(𝛼)(𝐠(𝐳,𝐦)),

where 𝐠∗(𝐳,𝐦) is the time average (75), 𝜆𝑗 = 𝑒𝑖𝜔𝑗 is an
eigenvalue with the associated eigenfunction 𝜙𝑗, 𝑘 can be
∞, and 𝐬𝑗(𝐳) is the 𝑗th Koopman mode, i.e., the projection
∫𝑀 𝐠𝜙𝑐𝑗𝑑𝜇 of 𝐠 on the eigenspace of the eigenfunction 𝜙𝑗.
The triple (𝜆𝑗 , 𝜙𝑗 , 𝐬𝑗) is called the spectral triple. From the
previous discussion, any finite set of 𝜙𝑗 ’s provides for a (di-
agonal!) linear representation of 𝑇.

The term

∫
1

0
exp(𝑖2𝜋𝛼)𝑑𝐸(𝛼)(𝐠(𝐳,𝐦)) ∈ 𝒪𝑐𝑜𝑛𝑡 ⊂ 𝒪 (76)

is the projection of 𝐠 on the continuous part of the spec-
trum that is orthogonal to

𝒪𝑒𝑖𝑔 = 𝖼𝗅(span{𝜙𝑗 , 𝑗 = 1, ...,∞}), (77)

where 𝖼𝗅 stands for closure. Any finite-dimensional repre-
sentation of 𝑇 in 𝒪𝑐𝑜𝑛𝑡 must be nonlinear.

Corollary 33 (To Proposition 31). A finite-dimensional rep-
resentation (𝐟, 𝐅) is not smoothly conjugate to a linear represen-
tation provided 𝐟 ⧸⟂ 𝒪𝑐𝑜𝑛𝑡.

Proof. Assume the conjugacy to a linear representation ex-
ists. Then 𝑈 has point spectrum [Mez20] and therefore
𝐟 ⟂ 𝒪𝑐𝑜𝑛𝑡. □

Dynamical systems can consist of linearizable and non-
linearizable parts, as the following example shows.

Example 34. Consider the following coupling of the limit
cycling system in Example 25 and the Lorenz system in
Example 14:

̇𝑟 = (1 + 𝑓(𝑥, 𝑦, 𝑧))𝑟(1 − 𝑟2),
̇𝜃 = 𝜔, (78)

̇𝑥 = 𝜎(𝑦 − 𝑥),
̇𝑦 = 𝑥(𝜌 − 𝑧) − 𝑦,
̇𝑧 = 𝑥𝑦 − 𝛽𝑧, (79)

where 𝑓 is some positive bounded real function 0 < 𝑓 <
𝑐 < ∞. The representation of this system is part linear
and part nonlinear, where the complex function 𝜓 = 𝑒𝑖𝜃
constitutes the linear part

̇𝜓 = 𝑖𝜔𝜓. (80)
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Since the Lorenz system is mixing, it has no point spec-
trum, and thus is not linearizable. This is therefore an ex-
ample in which the system is not linearizable as a whole,
but there exists a semiconjugacy where a part of it is lin-
earizable.

Similar results are available for spectral expansions of a
large class of systems with Milnor attractors; see [Mez20].
Types of spectra. There are two elements that determine
the spectrum of a given dynamical system: the function
space and the type of the attractor determined by its dy-
namics [Mez20]. Interestingly, these are commingled: a
linear dynamical system in a complex plane can have a
fixed point, where on a subset of linear observables the
spectrum is discrete, but in 𝐿2(𝜈), where 𝜈 is Lebesgue, will
have a very large spectrum, for example filling the entire
unit disk of the complex plane. The “on-attractor” space
can always be chosen to be 𝐿2(𝜇). But the transient dynam-
ics requires spaces adapted to the dynamics, as described in
[Mez20]. In such spaces, the on-attractor spectrum and
the off-attractor spectrum combine by multiplication to
provide the full spectrum of the Koopman operator: For
a scalar Koopman operator of a dynamical system with a
Milnor attractor with 𝜇 being a Borel measure, define the
tensor product space

ℋ = ℋ𝒜 ⊗ℋℬ, (81)

where ℋ𝒜 = 𝐿2(𝜇). Further, define ℋℬ = ℋ̃ℬ ∪ 𝟏, where
𝟏 is the constant unit function on 𝒟 and ℋ̃ℬ ⊂ 𝐶(𝒟) is a
Hilbert space of functions 𝑓 ∶ 𝒟 → ℂ that vanish on the
attractor 𝒜. Clearly, 𝑈𝑡 = 𝑈𝑡|ℋ𝒜 ⊗ 𝑈𝑡|ℋℬ on ℋ. Define
𝑃(𝑎, 𝑏) = 𝑎 ⋅ 𝑏, 𝑎, 𝑏 ∈ ℂ, to be the scalar product of 𝑎 and
𝑏, and

𝑃(𝐴, 𝐵) = ⋃
𝑎∈𝐴,𝑏∈𝐵

𝑃(𝑎, 𝑏), 𝐴, 𝐵 ⊂ ℂ. (82)

We have the following [Mez20].

Theorem 35. Consider the composition operator 𝑈𝑡 ∶ ℋ →
ℋ, and let 𝜎(𝑈𝑡|ℋ𝒜 ), 𝜎(𝒦|ℋℬ ) be the spectra of its restric-
tions toℋ𝒜 andℋℬ with the associated projection-valued spec-
tral measures 𝑃𝜔, 𝜔 ∈ 𝑆1, and 𝑃𝑧, 𝑧 ∈ ℂ. Then 𝜎(𝑈𝑡) =
cl(𝑃(𝜎(𝑈𝑡|ℋ𝒜 ), 𝜎(𝑈𝑡|ℋℬ ))) and

𝑈𝑡 = ∫
ℂ
∫
ℝ
𝑒𝑧𝑡𝑒𝑖2𝜋𝜔𝑡𝑑𝑃𝜔𝑑𝑃𝑧. (83)

Example 36. For a continuous-time, globally stable limit
cycle system in ℝ𝑛+1 with limit cycle frequency 𝜔, the on-
attractor spectrum is 𝑖𝑛𝜔, 𝑛 ∈ ℤ. The off-attractor spectrum
inModulated Fock Space [Mez20] consists of positive inte-
ger combinations 𝜆𝐦,𝑘 = 𝐦⋅𝛽,𝐦 ∈ ℕ𝑛, of Floquet stability
exponents 𝛽 = (𝛽1, ..., 𝛽𝑛). Thus, the full spectrum inℋ is
given by 𝑖𝑛𝜔 +𝐦 ⋅ 𝛽, 𝑛 ∈ ℤ,𝐦 ∈ ℕ𝑛.

Consider the three-dimensional, limit cycling system

̇𝑥 = 𝑦, (84)

̇𝑦 = 𝑥 − 𝑥3 − 𝑐𝑦, (85)
̇𝜃 = 𝜔. (86)

The two fixed points of equations (84)–(85) are 𝑦 = 0, 𝑥 =
±1. The linearization matrix at those is

𝐴 = [ 0 1
−2 −𝑐 ] , (87)

and thus the eigenvalues are determined by

(−𝜆)(−𝑐 − 𝜆) + 2 = 𝜆2 + 𝑐𝜆 + 2 = 0, (88)

leading to

𝜆1,2 =
−𝑐 ± √𝑐2 − 8

2 . (89)

For 𝑐 = √7, 𝜔 = 1, the eigenvalues read 𝜆3,4 =
−1.3228756 ± .5𝑖. Setting 𝜔 = 1, the other two principal
eigenvalues are ±𝑖. In Figure 2 (from [Mez20]) we show
a subset of the eigenvalues of the Koopman operator on
𝐿2(𝑆1) × 𝒜, where 𝒜 is the space of analytic functions on
the plane, in the basin of attraction of either of the limit
cycles (since they are symmetric) of (84)–(86).

Figure 2. Eigenvalues of the Koopman operator, for the
system (84)–(86) and the lattice of integers
{0, 1, … , 4} × {0, 1, … , 4}.

While the computations of point spectrum were al-
ready available in [MB04] using GLA, and [RMB+09] us-
ing DMD, computations of continuous spectrum aremore
recent [KPM20, Gia21]. They have been used to identify
coherent pseudoeigenfunctions in the (mixing!) Lorenz
system. The contour plot of such eigenfunction is shown
in Figure 3 (from [KPM20]). Such observables have much
longer prediction horizons than a typical observable on
the Lorenz system.
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Figure 3. Lorenz system: Approximation of the spectral
projection 𝑃[𝑎,𝑏]𝑓 with 𝑓(𝑥) = 𝑥3 and [𝑎, 𝑏] = [0.24, 0.28]. The
contours of the real and imaginary parts of the resulting
pseudoeigenfunction are indicated by color, showing
substantial regularity.

Learning Dynamical Systems from Data
Historically, the dynamical equations of motion, such as
Newton’s, Einstein’s, and Schrödinger’s, were obtained us-
ing depth of human intuition guided by small amounts
of, or no, data (Einstein’s case). Classical automatized ap-
proaches to learning dynamical systems from data arose
in control theory. The goal was to connect system inputs
𝐮 to system outputs 𝐲 via analysis of a structured model
connecting these. The most commonly used structure of
the model is linear:

𝐱̇ = 𝐴𝐱 + 𝐵𝐮,
𝐲 = 𝐶𝐱, (90)

where 𝐱 is the state of the system and 𝐲 is a linear vector of
observables.

In static machine learning problems there are also “in-
puts” and “outputs,” in the simplest case 𝐱 ∈ ℝ𝑛 and
𝐲 ∈ ℝ𝑚, although both input and output spaces can be
more complicated, say manifolds. The key objective is
to connect inputs and outputs by a map 𝑓 ∶ ℝ𝑛 → ℝ𝑚

learned from a measured subset of input-output pairs

(𝐱𝑗 , 𝐲𝑗), 𝑗 = 1, ..., 𝑁.

Let 𝐼𝑚(𝑓) be the image of the map 𝑓, and 𝐷𝑜𝑚(𝑓) its do-
main. Provided 𝐼𝑚(𝑓) ⊂ 𝐷𝑜𝑚(𝑓), 𝑓 could be considered
a dynamical system, since 𝑓𝑘(𝐱) is well defined for any
𝐱 ∈ 𝐷𝑜𝑚(𝑓). In this case the data pairs (𝐱𝑗 , 𝐲𝑗) can be
obtained as successive points along the trajectory of 𝑓:

𝐲𝑗 = 𝑓(𝐱𝑗) = 𝑓𝑗(𝐱). (91)

The learning problem in both the cases of static and dy-
namical systems 𝑓 is the same: given the data pairs, approx-
imate 𝑓 for any input point. The dynamics does provide an
advantage though, as data can be sampled along a trajec-
tory advancing in time. Assume a discrete-time dynamical
system 𝑇 has an 𝑛-dimensional linear representation (𝐟, 𝐴),
such that

𝐟′ = 𝐴𝐟. (92)

If we take samples of 𝐟 along a trajectory
𝐟(𝐦), 𝐟(𝑇𝐦), ..., 𝐟(𝑇𝑚𝐦), obtaining a sequence of snapshots

𝐟1 = 𝐟(𝐦), 𝐟(𝑇𝐦) = 𝐟2, ..., 𝐟(𝑇𝑚𝐦) = 𝐟𝑚, (93)

we have
𝐟(𝑇𝑘) = 𝐴𝐟(𝑇𝑘−1), 𝑘 = 1, ..., 𝑚. (94)

We can form data matrices

𝑋 =
⎡⎢⎢⎢
⎣

𝑓1(𝐦) 𝑓1(𝑇𝐦) ⋯ 𝑓1(𝑇𝑚−1𝐦)
𝑓2(𝐦) 𝑓2(𝑇𝐦) ⋯ 𝑓2(𝑇𝑚−1𝐦)
⋮

𝑓𝑛(𝐦) 𝑓𝑛(𝑇𝐦) ⋯ 𝑓𝑛(𝑇𝑚−1𝐦

⎤⎥⎥⎥
⎦

(95)

and

𝑋 ′ =
⎡⎢⎢⎢
⎣

𝑓1(𝑇𝐦) 𝑓1(𝑇2𝐦) ⋯ 𝑓1(𝑇𝑚𝐦)
𝑓2(𝑇𝐦) 𝑓2(𝑇2𝐦) ⋯ 𝑓2(𝑇𝑚𝐦)

⋮
𝑓𝑛(𝑇𝐦) 𝑓𝑛(𝑇2𝐦) ⋯ 𝑓𝑛(𝑇𝑚𝐦)

⎤⎥⎥⎥
⎦

. (96)

Note that each row 𝑗 of data matrices 𝑋, 𝑋 ′ is an evalua-
tion of the function 𝑓𝑗 on the trajectory of 𝑇 starting at𝑀.
Setting

𝑋 ′ = 𝑋𝐶, (97)

we see that 𝐶 is the companion matrix

𝑈̃ = 𝐶 =
⎛
⎜
⎜
⎜
⎝

0 0 … 0 𝑐1
1 0 … 0 𝑐2
0 1 … 0 𝑐3
⋮ ⋮ ⋱ ⋮ ⋮
0 0 … 1 𝑐𝑚

⎞
⎟
⎟
⎟
⎠

, (98)

where 𝐜 = (𝑐1, ..., 𝑐𝑚) = 𝐜𝑚. The solution of this equation,
provided 𝑚 = 𝑛 and 𝑋 is nonsingular, is

𝐶 = 𝑋−1𝑋 ′. (99)

The matrix 𝐶 would then be thought of as an approx-
imation to the Koopman operator acting on the space
𝒪𝑚 = ℝ𝑚 of functions on the set of points 𝑇𝑟 =
(𝐦, 𝑇𝐦, ..., 𝑇𝑚𝐦). There are several caveats here. Typi-
cally we do not know in advance that a linear representa-
tion exists. Thus, we need to specify the dimension 𝑛 and
choose 𝑓1, ..., 𝑓𝑛. In the case when 𝐟 does not span an 𝑛-
dimensional invariant subspace of 𝑈, we can as well iden-
tify 𝐶 from (99), but we can have

𝑓𝑗(𝑇𝑚) ≠
𝑚−1
∑
𝑘=1

𝑐𝑘𝑓𝑗(𝑇𝑘𝐦). (100)

In other words, it might be that the 𝑚th element of the
Krylov sequence 𝑓𝑗(𝐦), 𝑓𝑗(𝑇𝐦), ... does not belong to the
same subspace as the first 𝑚 − 1 elements. In addition,
all the functions 𝑓𝑘, 𝑘 = 1, ..., 𝑛, would have the same re-
lationship between the last element of their own Krylov
sequence and the prior elements. If the trajectory 𝑇𝑟 is pe-
riodic with period 𝑚, then 𝐜𝑚 = (1, 0, ..., 0) provides an
exact reduction of the Koopman operator to 𝒪𝑚. In prin-
ciple, for such trajectories the number of snapshots 𝐟1, ..., 𝐟𝑚
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can be smaller than the number of functions in each snap-
shot, and

𝐶 = 𝑋+𝑋, (101)

where
𝑋+ = (𝑋†𝑋)−1𝑋† (102)

is the Moore-Penrose pseudoinverse of 𝑋 , and 𝑋† is the
hermitian transpose (we allow for complex observables)
of 𝑋 . This was the reason behind the initial success utiliz-
ing the methodology of Dynamic Mode Decomposition
[Sch10] to complex fluid flows in [RMB+09], as the Koop-
man modes uncovered there were the consequence of the
quasi-periodic nature of a portion of the underlying attrac-
tor [Mez05].

A more structured approach to finding linear represen-
tations is that of finite-section methods, the first version
of which was Extended Dynamic Mode Decomposition
(EDMD) [WKR15]. Consider the Koopman operator act-
ing on an observable space 𝒪 of functions on the state
space 𝑀, equipped with the complex inner product ⟨⋅, ⋅⟩,7
and let 𝐟 = {𝑓𝑗}, 𝑗 ∈ ℕ, be an orthonormal basis on 𝒪,
such that, for any function 𝑓 ∈ 𝒪 we have

𝑓 = ∑
𝑗∈ℕ

𝑐𝑗𝑓𝑗 . (103)

Let
𝑢𝑘𝑗 = ⟨𝑈𝑓𝑗 , 𝑓𝑘⟩ . (104)

Then,

(𝑈𝑓)𝑘 = ⟨𝑈𝑓, 𝑓𝑘⟩ = ∑
𝑗∈ℕ

𝑐𝑗 ⟨𝑈𝑓𝑗 , 𝑓𝑘⟩ = ∑
𝑗∈ℕ

𝑢𝑘𝑗𝑐𝑗 . (105)

The basis functions do not necessarily need to be or-
thogonal. Consider the action of𝑈 on an individual, basis
function 𝑓𝑗:

𝑈𝑓𝑗 = ∑
𝑘∈ℕ

𝑢𝑘𝑗𝑓𝑘, (106)

where 𝑢𝑘𝑗 are now just coefficients of 𝑈𝑓𝑗 in the basis. We
obtain

𝑈𝑓 = ∑
𝑗∈ℕ

𝑐𝑗𝑈𝑓𝑗 = ∑
𝑗∈ℕ

𝑐𝑗 ∑
𝑘∈ℕ

𝑢𝑘𝑗𝑓𝑘 = ∑
𝑘∈ℕ

(∑
𝑗∈ℕ

𝑢𝑘𝑗𝑐𝑗)𝑓𝑘,

(107)
and we again have

(𝑈𝑓)𝑘 = ∑
𝑗∈ℕ

𝑢𝑘𝑗𝑐𝑗 . (108)

As in the previous section, associated with any linear sub-
space 𝒢 of 𝒪, there is a projection onto it, denoted 𝑃 =
𝑃2, that we can think of as projection “along” the space
(𝐼 − 𝑃)𝒪, since, for any 𝑓 ∈ 𝒪 we have

𝑃(𝐼 − 𝑃)𝑓 = (𝑃 − 𝑃2)𝑓 = 0, (109)

7Note that we are using the complex inner product linear in the first argu-
ment here. The physics literature typically employs the so-called Dirac notation,
where the inner product is linear in its second argument.

and thus any element of (𝐼 − 𝑃)𝒪 has projection 0. We de-
note by 𝑈̃ the infinite-dimensional matrix with elements
𝑢𝑘𝑗 , 𝑘, 𝑗 ∈ ℕ. Thus, the finite-dimensional section of the
matrix

𝑈̃𝑛 =
⎡
⎢
⎢
⎢
⎢
⎣

𝑢11 𝑢12 ⋯ 𝑢1𝑛
𝑢21 𝑢22 𝑢2𝑛

⋮ ⋱ ⋮
𝑢𝑛1 𝑢𝑛2 ⋯ 𝑢𝑛𝑛

⎤
⎥
⎥
⎥
⎥
⎦

(110)

is the so-called compression of 𝑈̃ that satisfies

𝑈̃𝑛 = 𝑃𝑛𝑈̃𝑃𝑛, (111)

where 𝑃𝑛 is the projection “along” (𝐼 − 𝑃𝑛)𝒪 to the span
of the first 𝑛 basis functions, span(𝑓1, ..., 𝑓𝑛). To apply the
finite-section methodology of approximation of the Koop-
man operator, we need to estimate coefficients 𝑢𝑘𝑗 from
data.

In the case of a nonorthonormal basis, denote by ̂𝑓𝑘 the
dual basis vectors, such that

⟨𝑓𝑗 , ̂𝑓𝑘⟩ = 𝛿𝑗𝑘, (112)

where 𝛿𝑗𝑗 = 1 for any 𝑗, and 𝛿𝑗𝑘 = 0 if 𝑗 ≠ 𝑘.
For the infinite-dimensional Koopman matrix coeffi-

cients we get
𝑢𝑘𝑗 = ⟨𝑈𝑓𝑗 , ̂𝑓𝑘⟩ . (113)

Let’s consider the finite set of independent functions ̃𝐟 =
{𝑓1, ..., 𝑓𝑁 } and the associated dual set { ̂𝑔1, ..., ̂𝑔𝑁 } in the span
𝒪̃ of ̃𝐟, that satisfy

⟨𝑓𝑗 , ̂𝑔𝑘⟩ = 𝛿𝑗𝑘. (114)

Under the ergodicity condition, in the case 𝒪 = 𝐿2(𝜇) it is
possible to obtain 𝑢̃𝑘𝑗 from data.

Theorem 37. Let {𝑓1, … , 𝑓𝑁 } be a set of functions in 𝐿2(𝑀, 𝜇),
and let 𝑇 be ergodic on𝑀 with respect to an invariant measure
𝜇. Let 𝐱𝑙, 𝑙 ∈ ℕ, be a trajectory on 𝑀. Then, for almost any
𝐱1 ∈ 𝑀

𝑢̃𝑘𝑗 = lim
𝑚→∞

1
𝑚

𝑚
∑
𝑙=1

𝑓𝑗 ∘ 𝑇(𝐱𝑙) ̂𝑔𝑐𝑘(𝐱𝑙)

= lim
𝑚→∞

1
𝑚

𝑚
∑
𝑙=1

𝑓𝑗(𝐱𝑙+1) ̂𝑔𝑐𝑘(𝐱𝑙), (115)

where, for any finite 𝑚, ̂𝑔𝑐𝑘(𝐱𝑙), 𝑙 = 1, ..., 𝑚, are obtained as
rows of the matrix (𝐹†𝐹)−1𝐹†, where

𝐹 = [𝑓1(𝐗) 𝑓2(𝐗)⋯𝑓𝑁(𝐗)] , (116)

𝐹† = (𝐹𝑐)𝑇 is the conjugate (Hermitian) transpose of 𝐹, and
𝑓𝑗(𝐗) is the column vector (𝑓𝑗(𝐱1)⋯𝑓𝑗(𝐱𝑚))𝑇 . The limit in
(115) exists due to Birkhoff’s ergodic theorem.

The above result is convenient as a single trajectory of an
ergodic system can be used to estimate the inner product.
But the formulation is restricted to measure-preserving sys-
tems. Alternatively, the above formula is valid in any case
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where the function space is a Hilbert space, and inner prod-
uct can be defined as a weighted sum over sample points
𝐱𝑙,

𝑢̃𝑘𝑗 = lim
𝑚→∞

1
𝑚

𝑚
∑
𝑙=1

𝑤(𝐱𝑙)𝑓𝑗(𝐱𝑙+1) ̂𝑔𝑐𝑘(𝐱𝑙). (117)

Proposition 38. Let (𝑀, 𝜇) be a measure space and 𝑇 ∶ 𝑀 →
𝑀. Let 𝐟 = (𝑓𝑗1 , ..., 𝑓𝑗𝑛) be a subset of a basis in a Hilbert
space of observables 𝒪 = 𝐿2(𝜇). Let 𝑢𝑗𝑘𝑙 = 0 whenever 𝑘 ∈
1, ..., 𝑛, 𝑙 ∉ {𝑗1, ..., 𝑗𝑛}. Then 𝑇 admits a finite-dimensional,
linear representation (𝐟, 𝑈̃ 𝐟), where 𝑈̃ 𝐟 is the matrix which is
restriction of 𝑈̃ to 𝐟.
Proof. The condition “𝑢𝑗𝑘𝑙 = 0 whenever 𝑘 ∈ 1, ..., 𝑛, 𝑙 ∉
{𝑗1, ..., 𝑗𝑛}” assures that

𝐟 ∘ 𝑇 = 𝐴𝐟, (118)

where 𝐴 = 𝑈̃ 𝐟. Namely, the time evolution of functions in
𝐟 projected on any subspace that does not contain any of
the functions in 𝐟 is 0. □

It is interesting that the finite section method can be
used to find nonlinear solutions (𝐟, 𝐅) of the equation (68)
and reveal nonlinear representations.

Proposition 39. Let (𝑀, 𝜇) be a measure space and 𝑇 ∶ 𝑀 →
𝑀. Let 𝐟 = (𝑓𝑗1 , ..., 𝑓𝑗𝑛) be a subset of a basis in a Hilbert
space of observables 𝒪 = 𝐿2(𝜇). Let 𝑢𝑗𝑘𝑙 = 0 whenever 𝑘 ∈
1, ..., 𝑛, 𝑓𝑙 ≠ 𝐹(𝐟) for some function 𝐹. Further assume that
there are 𝑙𝑘 ∈ ℕ, 𝑘 = 1, ..., 𝐾, such that 𝑓𝑙𝑘 = 𝐹𝑘(𝐟), where
𝐹𝑘 is nonlinear. Then 𝑇 admits a finite-dimensional, nonlinear
representation (𝐟, 𝐅), where 𝐅 is given by

𝐅(𝐟) = 𝐴 ̃𝐟, (119)

where 𝐟 ⊂ ̃𝐟 and 𝐴 is an 𝑛 × (𝑛 + 𝐾) matrix.
Proof. The condition “𝑢𝑗𝑘𝑙 = 0 whenever 𝑘 ∈ 1, ..., 𝑛,
𝑓𝑙 ≠ 𝐹(𝐟)” assures that the time evolution of 𝐟 under 𝑇 is
a (nonlinear) function 𝐹 of 𝐟 only, and 𝐅(𝐟) = 𝐴 ̃𝐟, because
𝑓𝑗𝑘 ∘ 𝑇 = ∑𝑚∈{𝑗1,...,𝑗𝑛,𝑙1,...,𝑙𝐾 } 𝑢𝑗𝑘𝑚𝑓𝑚. □

The key to the DMD-type approximations to the Koop-
man operator are the predetermined basis functions. In
the case of EDMD [WKR15], these are selected a priori, and
in the case of Hankel-DMD [AM17] they are generated us-
ing an initial choice of observables supplemented by time-
delayed observables generated by dynamics. While EDMD
generally (exceptions are kernel-based methods) suffers
from the curse of dimensionality, Hankel-DMD does not,
as in any dimension the generated functions fill up an
invariant subspace of the Koopman operator. However,
there is no guarantee that there is a (linear or nonlinear) fi-
nite representation amongst the observables in either case.
The framework of Generalized Laplace Analysis [MM14]
solves that problem by computing the spectrum and then
computing the eigenfunctions by weighted time averages.

As we have seen, eigenfunctions provide us with lin-
ear representations. The deep neural network formalism
has been used to compute linear representations, where
both the observables and the eigenmatrix 𝐴 are learned
[LDBK17,YKH19,LKB18,TKY17].

The neural network formulation for the solution of the
(nonlinear) representation eigenproblem (68) is

min
(𝜃,𝜓)

𝑚
∑
𝑗=1

||𝐧𝒪(𝐦𝑗+1, 𝜃) − 𝐧𝐅(𝐧𝒪(𝐦𝑗 , 𝜃), 𝜓)||, (120)

where 𝐧𝒪(𝐦𝑗+1, 𝜃) is the neural network representing the
observables, with parameters 𝜃, and 𝐧𝐅(𝐧, 𝜓) is the neu-
ral network representing the eigenmap, with parameters 𝜓.
The dimension of the vector 𝐧 (and thus the dimension of
𝐅) is a hyperparameter.

Extensions
“Static” composition operator. Instead of 𝑇 ∶ 𝑀 → 𝑀
whose iterations produce dynamical trajectories, we now
consider a “static” map 𝑇 between different spaces 𝑇 ∶
𝑀 → 𝑁, where no notion of iteration of the map is avail-
able. The set 𝒪𝑀 of all complex functions 𝑓 ∶ 𝑀 → ℂ is
the space of observables on𝑀, while the set𝒪𝑁 of all com-
plex functions 𝑔 ∶ 𝑁 → ℂ is the space of observables on
𝑁. Both are linear vector spaces over the field of complex
numbers. A finite-dimensional representation (𝐟, 𝐠, 𝐅) of
𝑇 is a double set of functions 𝐟 = (𝑓1, ..., 𝑓𝑛), 𝐠 = (𝑔1, ..., 𝑔𝑚)
and a mapping 𝐅 such that

𝐠(𝑇𝐦) = 𝐅(𝐟(𝐦)), (121)

where 𝐅 ∶ ℂ𝑛 → ℂ𝑚 and (𝑛,𝑚) is the dimension of the
representation. We again have the notion of a faithful rep-
resentation.

Definition 40. A representation (𝐟, 𝐠, 𝐅) of 𝑇 ∶ 𝑀 → 𝑁 is
called faithful provided 𝐟 ∶ 𝑀 → 𝐟(𝑀), 𝐠 ∶ 𝑁 → 𝐠(𝑁) are
injective.

The previous notion of representation is recovered
when𝑀 = 𝑁 and 𝐟 = 𝐠.

Any map 𝑇 ∶ 𝑀 → 𝑁 defines the pullback composition
operator 𝑈 ∶ 𝒪𝑁 → 𝒪𝑀 by

𝑈𝑔(𝐦) = 𝑔(𝑇𝐦). (122)

This is the linear composition operator associated with 𝑇 ∶
𝑀 → 𝑁. The image ℐ(𝑈) of 𝑈 is the set of functions 𝑓 ∶
𝒪𝑀 → ℂ that are constant on level sets 𝐿𝐧 of 𝑇:

𝐿𝐧 = {𝐦 ∈ 𝑀|𝐦 ∈ 𝑇−1(𝐧)}. (123)

The space ℐ(𝑈) is a linear subspace of 𝒪𝑀 .
Provided 𝒪𝑀 is a separable Hilbert space and ℐ(𝑈) is

closed, we can also define the pushforward operator 𝑃 ∶
𝒪𝑀 → 𝒪𝑁 by

𝑃(𝑓) = 𝐼𝑑(Π𝑓) ∘ 𝑇, (124)
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where Π ∶ 𝒪𝑀 → ℐ(𝑈) is the orthogonal projection op-
erator onto ℐ(𝑈), and 𝐼𝑑 ∶ ℐ(𝑈) → 𝒪(𝑁) is the operator
that identifies functions in ℐ(𝑈) with those in 𝒪(𝑁). The
singular value decomposition is valid for bounded oper-
ators between separable Hilbert spaces and thus we have
the following characterization of ℐ(𝑈).
Proposition 41. Let 𝒪𝑁 , 𝒪𝑀 be separable Hilbert spaces, and
let ℐ(𝑈) be closed. Then the space ℐ(𝑈) is orthogonal to the
subspace at the singular value 0 of 𝑃. In addition, 𝑈 is the
pseudoinverse of 𝑃.
Proof. The kernel of 𝑃, consisting of functions orthogonal
to ℐ(𝑈), is the subspace of 𝒪𝑀 corresponding to the singu-
lar value 0 of 𝑃. We also have

𝑈𝑃𝑓 = Π𝑓, (125)

proving that 𝑈 is the pseudoinverse of 𝑃. □
With a little bit of topological and measure-theoretic

infrastructure, we can characterize the projection operator
Π.
Theorem 42. Let (𝑀,𝑁) be two Radon spaces—separable met-
ric spaces on which every probability measure is a Radon mea-
sure. Assume that 𝑀 is endowed with a Borel measure 𝜇 and
𝑇 is a measurable map. Let 𝑁 be endowed with the measure
𝜈(𝐴) = 𝜇(𝑇−1(𝐴)). Then

Π(𝑓) = 𝔼(𝑓|ℬ𝑇−1), (126)

where 𝔼(𝑓|ℬ𝑇−1), the conditional expectation of 𝑓 with respect
to the sigma algebra induced by 𝑇, is the orthogonal projection
of 𝑓 on ℐ(𝑈).
Proof. First observe thatΠ(𝑓) as defined in (126) is in ℐ(𝑈)
and defines a projection, since applying conditional expec-
tation twice yields the same result as applying it once. We
need to prove that 𝑓−𝔼(𝑓|ℬ𝑇−1) is orthogonal to ℐ(𝑈), i.e.,

∫
𝑀
ℎ𝑐(𝑓 − 𝔼(𝑓|ℬ𝑇−1))𝑑𝜇 = 0, (127)

where ℎ ∈ ℐ(𝑈). Any function in ℐ(𝑈) is constant on level
sets of 𝑇, and by the disintegration of measure theorem

∫
𝑀
ℎ𝑐(𝑓 − 𝔼(𝑓|ℬ𝑇−1))𝑑𝜇

= ∫
𝑀
∫
𝑇−1(𝐧)

ℎ𝑐(𝑓 − 𝔼(𝑓|ℬ𝑇−1))𝑑𝜇𝐧𝑑𝜈(𝐧)

= ∫
𝑀
ℎ𝑐 (∫

𝑇−1(𝐧)
(𝑓 − 𝔼(𝑓|ℬ𝑇−1))𝑑𝜇𝐧) 𝑑𝜈(𝐧)

= 0,
(128)

since

∫
𝑇−1(𝐧)

𝑓𝑑𝜇𝐧 = 𝔼(𝑓|ℬ𝑇−1). (129)

□

The above two results constitute the beginning of the
analysis of nonlinear maps between different spaces using
an operator-theoretic approach that is similar to the one
deployed in dynamical systems using Koopman operators.
Now we have the following proposition.

Proposition 43. The set of functions (𝐟, 𝐠, 𝐅) ∶ 𝑀×𝑁×ℂ𝑘 →
ℂ𝑘 × ℂ𝑙 × ℂ𝑙 is a finite-dimensional representation of 𝑇 iff

𝑈𝐠(𝐦) = 𝐅(𝐟(𝐦)). (130)

The representation is linear provided 𝐅 is a finite-
dimensional 𝑘 × 𝑙 matrix:

𝑈𝐠(𝐦) = 𝐴𝐟(𝐦). (131)

To get an approximation to a finite-dimensional linear rep-
resentation, we may select bases (𝑓1, ..., 𝑓𝑚, ...) on 𝒪𝑀 and
(𝑔1, ..., 𝑔𝑛, ...) on 𝒪𝑁 , and construct the representation of
𝑃. We assume we have access to 𝑁 realizations of data
pairs corresponding to (𝐦𝑗 , 𝐧𝑗 = 𝑇(𝐦𝑗)), 𝑗 = 1, ..., 𝑁.
The data points are 𝐟𝑗 = (𝑓1(𝐦𝑗), ..., 𝑓𝑚(𝐦𝑗))𝑇 and 𝐠𝑗 =
(𝑔1(𝐧𝑗), ..., 𝑔𝑛(𝐧𝑗))𝑇 . We form matrices

𝑋 = [𝐟(𝐦1)⋯ 𝐟(𝐦𝑁)],
𝑌 = [𝐠(𝐧1)⋯𝐠(𝐧𝑁)]. (132)

The solution to
min
𝐴

||𝑌 − 𝐴𝑋|| (133)

is
𝐴 = 𝑌𝑋+, (134)

where 𝑋+ is the pseudoinverse of 𝑋 .
Relationship to Mori-Zwanzig formalism. The Mori-
Zwanzig formalism describes evolution of a subset of ob-
servables 𝐟 ∈ 𝒪, where 𝒪 is a Hilbert space, using the
Koopman operator and orthogonal projection 𝑃 on the
subspace spanned by 𝐟 = {𝑓1, ..., 𝑓𝑛}. Using 𝑃 and 𝑄 = 𝐼−𝑃
we get

𝑈𝑡𝐟 = (𝑃 + 𝑄)𝑈𝑡𝐟 = 𝑈̃𝑡
𝑛𝐟 + 𝑄𝑈𝑡𝐟, (135)

where 𝑈̃𝑡
𝑛 is the finite sectionmatrix (110), and𝑄𝑛𝑈𝑡𝐟 is the

projection of the evolution of 𝐟 on the space orthogonal to
the span of 𝐟 in 𝒪. It is immediately clear that, provided
(𝐟, 𝑈̃𝑡

𝑛) is a linear representation, 𝑄𝑈𝑡𝐟 is zero, and thus we
get

𝑈𝑡𝐟 = 𝑈̃𝑡
𝑛𝐟. (136)

Assuming 𝑈𝑡
𝑛 is diagonalizable, we get

𝑈𝑡𝐟 = Φ𝐷𝑡Φ−1𝐟, (137)

where 𝐷𝑡 is a diagonal matrix containing 𝜆𝑡𝑗 , 𝑗 = 1, ..., 𝑛, on
the diagonal, where 𝜆𝑗 is an eigenvalue of 𝑈̃𝑡

𝑛.
In discrete time, the evolution reads

𝑈2 = (𝑃 + 𝑄)𝑈(𝑃𝑈 + 𝑄𝑈)
= (𝑃𝑈)2 + 𝑃𝑈𝑄𝑈 + 𝑄𝑈𝑃𝑈 + (𝑄𝑈)2
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and, by induction,

𝑈𝑛 = (𝑃𝑈)𝑛

+
𝑛−1
∑

𝑘1,...,𝑘𝑛=0
∑𝑗 𝑘𝑗=𝑛

(𝑃𝑈𝑘1𝑄𝑈𝑘2 ⋯𝑃𝑈𝑘1𝑄𝑈𝑘2)

+ (𝑄𝑈)𝑛
= 𝑈̃𝑛

+
𝑛−1
∑

𝑘1,...,𝑘𝑛=0
∑𝑗 𝑘𝑗=𝑛

[(𝑃𝑈)𝑘1(𝑄𝑈)𝑘2 ⋯(𝑃𝑈)𝑘𝑛−1(𝑄𝑈)𝑘𝑛]

+ (𝑄𝑈)𝑛.

The second term is often interpreted as the “memory term”
but in fact it contains a total of 𝑛 applications of 𝑈 just
like the first and the last term. Rather, it describes the part
of the evolution that depends on the evolution in both
the span of 𝐟 and its orthogonal complement. The follow-
ing result clarifies the point, and identifies the situation in
which the evolution in projected variables is Markovian.

Proposition 44. If the evolution in the orthogonal comple-
ment of 𝐟 is dependent on 𝐟 only, but is not 0, i.e., 𝑄𝑈𝐟 ≠ 0,
then 𝑇 admits a nonlinear representation (𝐟, 𝐅).

Proof. Since 𝑄𝑈𝐟 = 𝐆(𝐟) for some 𝐆 ∶ ℂ𝑛 → ℂ𝑛 and
𝑃𝑈𝐟 = 𝑈̃𝑛𝐟, then

𝑈𝐟 = 𝑃𝑈𝐟 + 𝑄𝑈𝐟 = 𝑈̃𝑛𝐟 + 𝐆(𝐟) = 𝐅(𝐟), (138)

where 𝐅 ∶ ℂ𝑛 → ℂ𝑛. □

The following example of the result in the above propo-
sition also indicates the perils of modeling the (𝑄𝑈)𝑛 term
in (138) as noise as it is commonly done in Mori-Zwanzig
literature.

Example 45. Consider the irrational circle rotation 𝑇 ∶
𝑆1 → 𝑆1 defined by 𝑧′ = 𝑒𝑖𝜔𝑧, where 𝑧 = 𝑒𝑖𝜃 and 𝜔/2𝜋 is
irrational. This is an ergodic system on 𝑆1. We denote the
complex inner product with respect to Haar measure 𝜇 on
𝑆1 by ⟨⋅, ⋅⟩. Consider an analytic 𝐿2(𝜇) observable 𝑓 ∶ 𝑆1 →
ℂ that separates points on 𝑆1, namely 𝑓(𝑧1) = 𝑓(𝑧2) ⇒
𝑧1 = 𝑧2. The Taylor expansion of 𝑓 is given by

𝑓 =
∞
∑
𝑛=0

𝑐𝑛𝑧𝑛, (139)

where 𝑐𝑛 ∈ ℂ. We have

𝑈𝑓 = 𝑓′ =
∞
∑
𝑛=0

𝑐𝑛𝑒𝑖𝑛𝜔𝑧𝑛. (140)

Denoting the complex conjugate by (⋅)𝑐, we define the

complex scalar 𝜆 by

𝜆 = ⟨𝑓′, 𝑓⟩ =
∞
∑
𝑛=0

𝑐𝑛𝑐𝑐𝑛𝑒𝑖𝑛𝜔 ⟨𝑧𝑛, (𝑧𝑛)𝑐⟩ =
∞
∑
𝑛=0

|𝑐𝑛|2𝑒𝑖𝑛𝜔.

(141)
We have

𝑓′ = 𝜆𝑓 + 𝑄𝑈𝑓. (142)

Note that

𝑄𝑈𝑓 =
∞
∑
𝑛=0

𝑐𝑛(1 − 𝜆)𝑒𝑖𝑛𝜔𝑧𝑛 = (1 − 𝜆)𝑈𝑓. (143)

Since 𝑓 separates and𝑇 is a bijection, 𝑓(𝑧1) = 𝑓(𝑧2) ⇒ 𝑧1 =
𝑧2 ⇒ 𝑈𝑓(𝑧1) = 𝑈𝑓(𝑧2), and thus𝑄𝑈𝑓 = (1−𝜆)𝑈𝑓 = 𝐺(𝑓),
where 𝐺 ∶ 𝑓(𝑆1) → ℂ. Thus,

𝑓′ = 𝜆𝑓 + 𝐺𝑓 (144)

is Markovian, i.e., contains no memory terms, and is
“closed,” i.e., the term 𝑄𝑈𝑓 should not be modeled as
noise. The result can hold even if 𝑓 does not separate
points on 𝑆1. Namely, it is easy to see that for any 𝑛, 𝑓 = 𝑧𝑛
leads to 𝑐𝑛 = 1, 𝑐𝑗≠𝑛 = 0, 𝜆 = 𝑒𝑖𝑛𝜔, 𝐺(𝑓) = 0 and the evolu-
tion reads

𝑓′ = 𝑒𝑖𝑛𝜔𝑓, (145)

reflecting the fact that 𝑓 is an eigenfunction of 𝑈 with
eigenvalue 𝑒𝑖𝑛𝜔.

The main result (144) in the above example is also
true for dynamical systems in Hilbert functional spaces in
which the Koopman operator has point spectrum [Mez20],
and there is a set of separating principal eigenfunctions
[MM14] of 𝑈 or 𝑈𝑡. Provided the set of observables 𝐟 sep-
arates, we can use the algebraic property of eigenfunctions
(47); then the evolution of 𝐟 under 𝑈 reads

𝐟′ = 𝐴𝐟 + 𝐆(𝐟), (146)

and there are no noise and memory terms.
From the foregoing analysis it becomes clear that the

noise and memory terms in the Mori-Zwanzig framework
arise due to (1) the fact that the chosen representation 𝐟 is
not faithful and (2) the spectrumof the Koopmanoperator
associated with a dynamical system has a continuous part.

Conclusions and Futures
We provided a framework for learning of dynamical sys-
tems rooted in the concept of representations and Koop-
man operators. The interplay between the two leads to the
full description of systems that can be represented linearly
in a finite dimension, based on the properties of Koopman
operator spectrum. This is achieved using eigenfunctions,
in the case when the operator spectrum is discrete. A re-
duced set of eigenfunctions can be viewed as an autoen-
coder. As shown here, while systems with continuous spec-
trum do not admit finite-dimensional linear representa-
tions, they might be represented in the finite-dimensional
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nonlinear setting, within an infinite-dimensional invari-
ant subspace of the operator. Thus, even nonlinear rep-
resentations can be learned using the Koopman operator
framework, and functional approximations using neural
networks might be well suited for this task, encoded in the
representation eigenproblem.

The essential difference in the type of learning happen-
ing in our brains and the type of supervised learning dom-
inant in machine learning is the notion of time. Time
is also at the core of understanding causal relationships.
Namely, without time only correlation between observ-
ables is possible. The Koopman operator theory remedies
this by explicitly taking time into account and providing
this dimension of learning with the explicit mathematical
structure. Moreover, based on techniques such as Gener-
alized Laplace Analysis, that naturally yield themselves to
adjustments using streaming data, unsupervised learning,
leading to generative models, is achievable, where future
data is adapted organically into the learned structure. The
approach thus provides a suitable setting for unsupervised
learning of dynamical systems.
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[Mez94] IgorMezić,On the geometrical and statistical properties
of dynamical systems: Theory and applications, ProQuest LLC,
Ann Arbor, MI, 1994. Thesis (Ph.D.)–California Institute
of Technology. MR2691109

[MM12] Alexandre Mauroy and Igor Mezić, On the use
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Philipp Schlatter, and Dan S. Henningson, Spectral analysis
of nonlinear flows, J. Fluid Mech. 641 (2009), 115–127, DOI
10.1017/S0022112009992059. MR2577895

[Sch10] Peter J. Schmid,Dynamic mode decomposition of numer-
ical and experimental data, J. Fluid Mech. 656 (2010), 5–28,
DOI 10.1017/S0022112010001217. MR2669948

[TKY17] Naoya Takeishi, Yoshinobu Kawahara, and Takehisa
Yairi, Learning Koopman invariant subspaces for dynamic mode
decomposition, Advances in Neural Information Processing
Systems, 2017, pp. 1130–1140.

[WKR15] Matthew O. Williams, Ioannis G. Kevrekidis, and
Clarence W. Rowley, A data-driven approximation of the
Koopman operator: extending dynamic mode decomposition,
J. Nonlinear Sci. 25 (2015), no. 6, 1307–1346, DOI
10.1007/s00332-015-9258-5. MR3415049

[YKH19] Enoch Yeung, Soumya Kundu, and Nathan Hodas,
Learning deep neural network representations for Koopman oper-
ators of nonlinear dynamical systems, 2019 American Control
Conference (ACC), 2019, pp. 4832–4839.

1104 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 68, NUMBER 7

http://www.ams.org/mathscinet-getitem?mr=3720364
http://www.ams.org/mathscinet-getitem?mr=4208217
http://www.ams.org/mathscinet-getitem?mr=4047538
http://www.ams.org/mathscinet-getitem?mr=3709448
http://www.ams.org/mathscinet-getitem?mr=3415049
http://www.ams.org/mathscinet-getitem?mr=2669948
http://www.ams.org/mathscinet-getitem?mr=2577895
http://www.ams.org/mathscinet-getitem?mr=3144005
http://www.ams.org/mathscinet-getitem?mr=3388606
http://www.ams.org/mathscinet-getitem?mr=2691109
http://www.ams.org/mathscinet-getitem?mr=4163461
http://www.ams.org/mathscinet-getitem?mr=2157184
http://www.ams.org/mathscinet-getitem?mr=2092096
http://www.ams.org/mathscinet-getitem?mr=3389869
http://www.arxiv.org/abs/2010.05377
http://www.arxiv.org/abs/1403.6559
http://dx.doi.org/10.1137/17M1125236
http://dx.doi.org/10.1007/s40687-020-00239-y
http://dx.doi.org/10.1007/s40687-020-00239-y
http://dx.doi.org/10.1016/j.acha.2018.08.002
http://dx.doi.org/10.1063/1.4993854
http://dx.doi.org/10.1063/1.4993854
http://dx.doi.org/10.1016/j.physd.2013.06.004
http://dx.doi.org/10.1017/S0022112010001217
http://dx.doi.org/10.1017/S0022112009992059
http://dx.doi.org/10.1063/1.4736859
http://dx.doi.org/10.1007/s00332-019-09598-5
http://dx.doi.org/10.1007/s11071-005-2824-x
http://dx.doi.org/10.1007/s11071-005-2824-x
http://dx.doi.org/10.1016/j.physd.2004.06.015
http://dx.doi.org/10.1063/1.4919767


Igor Mezić
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