Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Explicit integral Galois module structure of weakly ramified extensions of local fields
HTML articles powered by AMS MathViewer

by Henri Johnston PDF
Proc. Amer. Math. Soc. 143 (2015), 5059-5071 Request permission

Abstract:

Let $L/K$ be a finite Galois extension of complete local fields with finite residue fields and let $G=\operatorname {Gal}(L/K)$. Let $G_{1}$ and $G_{2}$ be the first and second ramification groups. Thus $L/K$ is tamely ramified when $G_{1}$ is trivial and we say that $L/K$ is weakly ramified when $G_{2}$ is trivial. Let $\mathcal {O}_{L}$ be the valuation ring of $L$ and let $\mathfrak {P}_{L}$ be its maximal ideal. We show that if $L/K$ is weakly ramified and $n \equiv 1 \bmod |G_{1}|$, then $\mathfrak {P}_{L}^{n}$ is free over the group ring $\mathcal {O}_{K}[G]$, and we construct an explicit generating element. Under the additional assumption that $L/K$ is wildly ramified, we then show that every free generator of $\mathfrak {P}_{L}$ over $\mathcal {O}_{K}[G]$ is also a free generator of $\mathcal {O}_{L}$ over its associated order in the group algebra $K[G]$. Along the way, we prove a ‘splitting lemma’ for local fields, which may be of independent interest.
References
  • N. P. Byott and G. G. Elder, Sufficient conditions for large Galois scaffolds, http://arxiv.org/abs/1308.2092v2, 2014.
  • Nigel P. Byott, Integral Galois module structure of some Lubin-Tate extensions, J. Number Theory 77 (1999), no. 2, 252–273. MR 1702149, DOI 10.1006/jnth.1999.2385
  • Robin J. Chapman, A simple proof of Noether’s theorem, Glasgow Math. J. 38 (1996), no. 1, 49–51. MR 1373957, DOI 10.1017/S0017089500031244
  • Lindsay N. Childs and Morris Orzech, On modular group rings, normal bases, and fixed points, Amer. Math. Monthly 88 (1981), no. 2, 142–145. MR 606253, DOI 10.2307/2321137
  • Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. I, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1981. With applications to finite groups and orders. MR 632548
  • B. Erez, The Galois structure of the square root of the inverse different, Math. Z. 208 (1991), no. 2, 239–255. MR 1128708, DOI 10.1007/BF02571523
  • A. Fröhlich and M. J. Taylor, Algebraic number theory, Cambridge Studies in Advanced Mathematics, vol. 27, Cambridge University Press, Cambridge, 1993. MR 1215934
  • Helmut Hasse, Number theory, Translated from the third (1969) German edition, Classics in Mathematics, Springer-Verlag, Berlin, 2002. Reprint of the 1980 English edition [Springer, Berlin; MR0562104 (81c:12001b)]; Edited and with a preface by Horst Günter Zimmer. MR 1885791
  • H. Johnston, Iterated semi-direct products, MathOverflow, 2014, URL: http://mathoverflow.net/q/156209 (version: 2014-01-30).
  • Fuminori Kawamoto, On normal integral bases of local fields, J. Algebra 98 (1986), no. 1, 197–199. MR 825142, DOI 10.1016/0021-8693(86)90022-0
  • Bernhard Köck, Galois structure of Zariski cohomology for weakly ramified covers of curves, Amer. J. Math. 126 (2004), no. 5, 1085–1107. MR 2089083
  • Hans Kurzweil and Bernd Stellmacher, The theory of finite groups, Universitext, Springer-Verlag, New York, 2004. An introduction; Translated from the 1998 German original. MR 2014408, DOI 10.1007/b97433
  • Günter Lettl, Relative Galois module structure of integers of local abelian fields, Acta Arith. 85 (1998), no. 3, 235–248. MR 1627831, DOI 10.4064/aa-85-3-235-248
  • E. Noether, Normalbasis bei Körpern ohne höhere Verzweigung., J. Reine Angew. Math. 167 (1932), 147–152.
  • I. A. Semaev, Construction of polynomials, irreducible over a finite field, with linearly independent roots, Mat. Sb. (N.S.) 135(177) (1988), no. 4, 520–532, 560 (Russian); English transl., Math. USSR-Sb. 63 (1989), no. 2, 507–519. MR 942137, DOI 10.1070/SM1989v063n02ABEH003288
  • Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR 554237
  • Lara Thomas, A valuation criterion for normal basis generators in equal positive characteristic, J. Algebra 320 (2008), no. 10, 3811–3820. MR 2457723, DOI 10.1016/j.jalgebra.2008.05.024
  • S. Ullom, Galois cohomology of ambiguous ideals, J. Number Theory 1 (1969), 11–15. MR 237473, DOI 10.1016/0022-314X(69)90022-5
  • S. Ullom, Normal bases in Galois extensions of number fields, Nagoya Math. J. 34 (1969), 153–167. MR 240082
  • S. Ullom, Integral normal bases in Galois extensions of local fields, Nagoya Math. J. 39 (1970), 141–148. MR 263790
  • Stéphane Vinatier, Galois module structure in weakly ramified 3-extensions, Acta Arith. 119 (2005), no. 2, 171–186. MR 2167720, DOI 10.4064/aa119-2-3
  • S. V. Vostokov, Normal basis for an ideal in a local ring, J. Sov. Math. 17 (1981), 1755–1758.
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11R33, 11S15
  • Retrieve articles in all journals with MSC (2010): 11R33, 11S15
Additional Information
  • Henri Johnston
  • Affiliation: Department of Mathematics, University of Exeter, Exeter, EX4 4QF, United Kingdom
  • MR Author ID: 776746
  • ORCID: 0000-0001-5764-0840
  • Email: H.Johnston@exeter.ac.uk
  • Received by editor(s): August 20, 2014
  • Received by editor(s) in revised form: September 15, 2014
  • Published electronically: May 7, 2015
  • Communicated by: Romyar T. Sharifi
  • © Copyright 2015 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 143 (2015), 5059-5071
  • MSC (2010): Primary 11R33, 11S15
  • DOI: https://doi.org/10.1090/proc/12634
  • MathSciNet review: 3411126