Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Accessible parts of boundary for simply connected domains


Authors: Pekka Koskela, Debanjan Nandi and Artur Nicolau
Journal: Proc. Amer. Math. Soc.
MSC (2010): Primary 26D15, 30C35
DOI: https://doi.org/10.1090/proc/13994
Published electronically: February 28, 2018
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a bounded simply connected domain $ \Omega \subset \mathbb{R}^2$, any point $ z\in \Omega $ and any $ 0<\alpha <1$, we give a lower bound for the $ \alpha $-dimensional Hausdorff content of the set of points in the boundary of $ \Omega $ which can be joined to $ z$ by a John curve with a suitable John constant depending only on $ \alpha $, in terms of the distance of $ z$ to $ \partial \Omega $. In fact this set in the boundary contains the intersection $ \partial \Omega _z\cap \partial \Omega $ of the boundary of a John subdomain $ \Omega _z$ of $ \Omega $, centered at $ z$, with the boundary of $ \Omega $. This may be understood as a quantitative version of a result of Makarov. This estimate is then applied to obtain the pointwise version of a weighted Hardy inequality.


References [Enhancements On Off] (What's this?)

  • [1] Piotr Hajłasz, Pointwise Hardy inequalities, Proc. Amer. Math. Soc. 127 (1999), no. 2, 417-423. MR 1458875
  • [2] G. H. Hardy, Note on a theorem of Hilbert, Math. Z. 6 (1920), no. 3-4, 314-317. MR 1544414
  • [3] G. H. Hardy, Notes on some points in the integral calculus (LX), Messenger of Math. 54 (1925), 150-156.
  • [4] J. Kinnunen and O. Martio, Hardy's inequalities for Sobolev functions, Math. Res. Lett. 4 (1997), 489-500. MR 1470421
  • [5] P. Koskela and J. Lehrbäck, Weighted pointwise Hardy Inequalities, J. London Math. Soc. (2) 79 (2009), no. 3, 757-779. MR 2506697
  • [6] J. Lehrbäck, Weighted Hardy inequalities beyond Lipschitz domains, Proc. Amer. Math. Soc. 142 (2014), no. 5, 1705-1715. MR 3168477
  • [7] N. Makarov, Probability methods in the theory of conformal mappings, Algebra i Analiz 1 (1989), no. 1, 3-59 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 1, 1-56. MR 1015333.
  • [8] J. Nečas, Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle, Ann. Scuola Norm. Sup. Pisa (3) 16 (1962), 305-326.MR 0163054
  • [9] A. Nicolau, Radial behaviour of Bloch harmonic fucntions and their area function, Indiana Univ. Math. J. 4 (1999), 1213-1236. MR 1757073
  • [10] Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. MR 1217706
  • [11] S. Rohde, The boundary behavior of Bloch functions, J. London Math. Soc. (2) 48 (1993), no. 3, 488-499. MR 1241783

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 26D15, 30C35

Retrieve articles in all journals with MSC (2010): 26D15, 30C35


Additional Information

Pekka Koskela
Affiliation: Department of Mathematics and Statistics, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
Email: pekka.j.koskela@jyu.fi

Debanjan Nandi
Affiliation: Department of Mathematics and Statistics, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
Email: debanjan.s.nandi@jyu.fi

Artur Nicolau
Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bella- terra. Barcelona, Spain
Email: artur@mat.uab.cat

DOI: https://doi.org/10.1090/proc/13994
Keywords: Simply connected, John domain, Hardy inequality
Received by editor(s): June 19, 2017
Received by editor(s) in revised form: October 19, 2017
Published electronically: February 28, 2018
Additional Notes: The third author was partially supported by the grants 2014SGR75 of Generalitat de Catalunya and MTM2014-51824-P and MTM2017-85666-P of Ministerio de Ciencia e Innovación. The first and second authors were partially supported by the Academy of Finland grant 307333.
Communicated by: Jeremy Tyson
Article copyright: © Copyright 2018 American Mathematical Society

American Mathematical Society