Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Sylvester's problem and mock Heegner points


Authors: Samit Dasgupta and John Voight
Journal: Proc. Amer. Math. Soc.
MSC (2010): Primary 11D25, 11G05, 11G40, 11G15
DOI: https://doi.org/10.1090/proc/14008
Published electronically: March 20, 2018
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that if $ p \equiv 4,7 \pmod {9}$ is prime and $ 3$ is not a cube modulo $ p$, then both of the equations $ x^3+y^3=p$ and $ x^3+y^3=p^2$ have a solution with $ x,y \in \mathbb{Q}$.


References [Enhancements On Off] (What's this?)

  • [1] Li Cai, Jie Shu, and Ye Tian, Cube sum problem and an explicit Gross-Zagier formula, Amer. J. Math. 139 (2017), no. 3, 785-816. MR 3650233
  • [2] Henri Darmon, Rational points on modular elliptic curves, CBMS Regional Conference Series in Mathematics, vol. 101, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2004. MR 2020572
  • [3] Samit Dasgupta and John Voight, Heegner points and Sylvester's conjecture, Arithmetic geometry, Clay Math. Proc., vol. 8, Amer. Math. Soc., Providence, RI, 2009, pp. 91-102. MR 2498056
  • [4] Noam D. Elkies, Heegner point computations, Algorithmic number theory (Ithaca, NY, 1994) Lecture Notes in Comput. Sci., vol. 877, Springer, Berlin, 1994, pp. 122-133. MR 1322717
  • [5] Noam Elkies, Tables of fundamental integer solutions $ (x,y,z)$ of $ x^3+y^3=pz^3$ with $ p$ a prime congruent to $ 4$ mod $ 9$ and less than $ 5000$ or congruent to $ 7$ mod $ 9$ and less than $ 1000$, available at http://www.math.harvard.edu/˜elkies/sel_p.html.
  • [6] Benedict H. Gross and Don B. Zagier, Heegner points and derivatives of $ L$-series, Invent. Math. 84 (1986), no. 2, 225-320. MR 833192
  • [7] L. J. P. Kilford, Generating spaces of modular forms with $ \eta$-quotients, JP J. Algebra Number Theory Appl. 8 (2007), no. 2, 213-226. MR 2406859
  • [8] Paul Monsky, Mock Heegner points and congruent numbers, Math. Z. 204 (1990), no. 1, 45-67. MR 1048066
  • [9] A. P. Ogg, Modular functions, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979) Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., Providence, R.I., 1980, pp. 521-532. MR 604631
  • [10] Fernando Rodríguez Villegas and Don Zagier, Which primes are sums of two cubes?, Number theory (Halifax, NS, 1994) CMS Conf. Proc., vol. 15, Amer. Math. Soc., Providence, RI, 1995, pp. 295-306. MR 1353940
  • [11] Philippe Satgé, Groupes de Selmer et corps cubiques, J. Number Theory 23 (1986), no. 3, 294-317 (French). MR 846960
  • [12] Philippe Satgé, Un analogue du calcul de Heegner, Invent. Math. 87 (1987), no. 2, 425-439 (French). MR 870738
  • [13] Ernst S. Selmer, The Diophantine equation $ ax^3+by^3+cz^3=0$, Acta Math. 85 (1951), 203-362 (1 plate). MR 0041871
  • [14] Jie Shu and Hongbo Yin, An explicit Gross-Zagier formula related to the Sylvester conjecture, preprint, 2017, arxiv.org/pdf/1708.05266.pdf.
  • [15] Joseph H. Silverman, The arithmetic of elliptic curves, 2nd ed., Graduate Texts in Mathematics, vol. 106, Springer, Dordrecht, 2009. MR 2514094
  • [16] J. J. Sylvester, On Certain Ternary Cubic-Form Equations, Amer. J. Math. 2 (1879), no. 4, 357-393. MR 1505237

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11D25, 11G05, 11G40, 11G15

Retrieve articles in all journals with MSC (2010): 11D25, 11G05, 11G40, 11G15


Additional Information

John Voight
Affiliation: Department of Mathematics, Dartmouth College, 6188 Kemeny Hall, Hanover, New Hampshire 03755
Address at time of publication: Department of Mathematics, University of California Santa Cruz, 1156 High St, Santa Cruz, California 95064

DOI: https://doi.org/10.1090/proc/14008
Received by editor(s): July 18, 2017
Received by editor(s) in revised form: October 31, 2017
Published electronically: March 20, 2018
Communicated by: Romyar T. Sharifi
Article copyright: © Copyright 2018 American Mathematical Society

American Mathematical Society