Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Lefschetz properties for complete intersection ideals generated by products of linear forms


Authors: Martina Juhnke-Kubitzke, Rosa M. Miró-Roig, Satoshi Murai and Akihito Wachi
Journal: Proc. Amer. Math. Soc.
MSC (2010): Primary 13E10, 13C13, 13C40
DOI: https://doi.org/10.1090/proc/14009
Published electronically: March 19, 2018
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we study the strong Lefschetz property of artinian complete intersection ideals generated by products of linear forms. We prove the strong Lefschetz property for a class of such ideals with binomial generators.


References [Enhancements On Off] (What's this?)

  • [1] Abed Abedelfatah, On the Eisenbud-Green-Harris conjecture, Proc. Amer. Math. Soc. 143 (2015), no. 1, 105-115. MR 3272735
  • [2] C. Almeida and A.V. Andrade, Lefschetz property and powers of linear forms in $ K[x,y,z]$, Forum Math., to appear.
  • [3] D. Grayson and M. Stillman, Macaulay 2, a software system for research in algebraic geometry, Available at http://www.math.uiuc.edu.Macaulay2/
  • [4] Brian Harbourne, Hal Schenck, and Alexandra Seceleanu, Inverse systems, Gelfand-Tsetlin patterns and the weak Lefschetz property, J. Lond. Math. Soc. (2) 84 (2011), no. 3, 712-730. MR 2855798
  • [5] Tadahito Harima, Toshiaki Maeno, Hideaki Morita, Yasuhide Numata, Akihito Wachi, and Junzo Watanabe, The Lefschetz properties, Lecture Notes in Mathematics, vol. 2080, Springer, Heidelberg, 2013. MR 3112920
  • [6] J. Herzog and D. Popescu, The strong Lefschetz property and simple extensions, preprint. Available on the arXiv at http://front.math.ucdavis.edu/0506.5537.
  • [7] Hidemi Ikeda, Results on Dilworth and Rees numbers of Artinian local rings, Japan. J. Math. (N.S.) 22 (1996), no. 1, 147-158. MR 1394376
  • [8] Juan C. Migliore, Rosa M. Miró-Roig, and Uwe Nagel, Monomial ideals, almost complete intersections and the weak Lefschetz property, Trans. Amer. Math. Soc. 363 (2011), no. 1, 229-257. MR 2719680
  • [9] Juan C. Migliore, Rosa M. Miró-Roig, and Uwe Nagel, On the weak Lefschetz property for powers of linear forms, Algebra Number Theory 6 (2012), no. 3, 487-526. MR 2966707
  • [10] Juan Migliore and Uwe Nagel, Survey article: a tour of the weak and strong Lefschetz properties, J. Commut. Algebra 5 (2013), no. 3, 329-358. MR 3161738
  • [11] Rosa M. Miró-Roig, Harbourne, Schenck and Seceleanu's conjecture, J. Algebra 462 (2016), 54-66. MR 3519499
  • [12] Les Reid, Leslie G. Roberts, and Moshe Roitman, On complete intersections and their Hilbert functions, Canad. Math. Bull. 34 (1991), no. 4, 525-535. MR 1136655
  • [13] Hal Schenck and Alexandra Seceleanu, The weak Lefschetz property and powers of linear forms in $ \mathbb{K}[x,y,z]$, Proc. Amer. Math. Soc. 138 (2010), no. 7, 2335-2339. MR 2607862
  • [14] Richard P. Stanley, Weyl groups, the hard Lefschetz theorem, and the Sperner property, SIAM J. Algebraic Discrete Methods 1 (1980), no. 2, 168-184. MR 578321
  • [15] Junzo Watanabe, The Dilworth number of Artinian rings and finite posets with rank function, Commutative algebra and combinatorics (Kyoto, 1985) Adv. Stud. Pure Math., vol. 11, North-Holland, Amsterdam, 1987, pp. 303-312. MR 951211
  • [16] Attila Wiebe, The Lefschetz property for componentwise linear ideals and Gotzmann ideals, Comm. Algebra 32 (2004), no. 12, 4601-4611. MR 2111103

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 13E10, 13C13, 13C40

Retrieve articles in all journals with MSC (2010): 13E10, 13C13, 13C40


Additional Information

Martina Juhnke-Kubitzke
Affiliation: Fakultät für Mathematik, Universität Osnabrück, Albrechtstraße 28a, 49076 Osnabrück, Germany
Email: juhnke-kubitzke@uni-osnabrueck.de

Rosa M. Miró-Roig
Affiliation: Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain
Email: miro@ub.edu

Satoshi Murai
Affiliation: Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, 565-0871, Japan
Email: s-murai@ist.osaka-u.ac.jp

Akihito Wachi
Affiliation: Department of Mathematics, Hokkaido University of Education, Kushiro, 085-8580 Japan
Email: wachi.akihito@k.hokkyodai.ac.jp

DOI: https://doi.org/10.1090/proc/14009
Keywords: Strong Lefschetz property, initial ideals, monomial ideals, complete intersection, Hilbert function.
Received by editor(s): August 19, 2017
Received by editor(s) in revised form: October 21, 2017
Published electronically: March 19, 2018
Additional Notes: The first author was sponsored by the German Research Council DFG GRK-1916, the second author was sponsored by MTM2016-78623-P, the third author was sponsored by JSPS KAKENHI Grant 16K05102, and the fourth author was sponsored by JSPS KAKENHI Grant 15K04812.
Communicated by: Irena Peeva
Article copyright: © Copyright 2018 American Mathematical Society

American Mathematical Society