Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On Ribet's isogeny for $ J_0(65)$


Authors: Krzysztof Klosin and Mihran Papikian
Journal: Proc. Amer. Math. Soc.
MSC (2010): Primary 11G18
DOI: https://doi.org/10.1090/proc/14019
Published electronically: February 28, 2018
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ J^{65}$ be the Jacobian of the Shimura curve attached to the indefinite quaternion algebra over $ \mathbb{Q}$ of discriminant $ 65$. We study the isogenies $ J_0(65)\to J^{65}$ defined over $ \mathbb{Q}$, whose existence was proved by Ribet. We prove that there is an isogeny whose kernel is supported on the Eisenstein maximal ideals of the Hecke algebra acting on $ J_0(65)$, and, moreover, the odd part of the kernel is generated by a cuspidal divisor of order $ 7$, as is predicted by a conjecture of Ogg.


References [Enhancements On Off] (What's this?)

  • [1] Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud, Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21, Springer-Verlag, Berlin, 1990. MR 1045822
  • [2] Seng-Kiat Chua and San Ling, On the rational cuspidal subgroup and the rational torsion points of $ J_0(pq)$, Proc. Amer. Math. Soc. 125 (1997), no. 8, 2255-2263. MR 1396972
  • [3] Brian Conrad and William A. Stein, Component groups of purely toric quotients, Math. Res. Lett. 8 (2001), no. 5-6, 745-766. MR 1879817
  • [4] David A. Cox, Primes of the form $ x^2 + ny^2$, 2nd ed., Pure and Applied Mathematics (Hoboken), John Wiley & Sons, Inc., Hoboken, NJ, 2013. Fermat, class field theory, and complex multiplication. MR 3236783
  • [5] J. E. Cremona, Algorithms for modular elliptic curves, 2nd ed., Cambridge University Press, Cambridge, 1997. MR 1628193
  • [6] Josep González and Santiago Molina, The kernel of Ribet's isogeny for genus three Shimura curves, J. Math. Soc. Japan 68 (2016), no. 2, 609-635. MR 3488137
  • [7] Josep González and Victor Rotger, Equations of Shimura curves of genus two, Int. Math. Res. Not. 14 (2004), 661-674. MR 2038166
  • [8] A. Grothendieck, Modèles de Néron et monodromie, SGA 7, Exposé IX, 1972.
  • [9] David Helm, On maps between modular Jacobians and Jacobians of Shimura curves, Israel J. Math. 160 (2007), 61-117. MR 2342491
  • [10] Bruce W. Jordan and Ron A. Livné, On the Néron model of Jacobians of Shimura curves, Compositio Math. 60 (1986), no. 2, 227-236. MR 868139
  • [11] Nicholas M. Katz, Galois properties of torsion points on abelian varieties, Invent. Math. 62 (1981), no. 3, 481-502. MR 604840
  • [12] San Ling and Joseph Oesterlé, The Shimura subgroup of $ J_0(N)$, Astérisque 196-197 (1991), 6, 171-203 (1992) (English, with French summary). Courbes modulaires et courbes de Shimura (Orsay, 1987/1988). MR 1141458
  • [13] B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 33-186 (1978). MR 488287
  • [14] Jean-Francis Michon, Courbes de Shimura hyperelliptiques, Bull. Soc. Math. France 109 (1981), no. 2, 217-225 (French). MR 623790
  • [15] David Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, No. 5, Published for the Tata Institute of Fundamental Research, Bombay; Oxford University Press, London, 1970. MR 0282985
  • [16] A. P. Ogg, Mauvaise réduction des courbes de Shimura, Séminaire de théorie des nombres, Paris 1983-84, Progr. Math., vol. 59, Birkhäuser Boston, Boston, MA, 1985, pp. 199-217 (French). MR 902833
  • [17] Masami Ohta, Eisenstein ideals and the rational torsion subgroups of modular Jacobian varieties II, Tokyo J. Math. 37 (2014), no. 2, 273-318. MR 3304683
  • [18] Mihran Papikian, On Jacquet-Langlands isogeny over function fields, J. Number Theory 131 (2011), no. 7, 1149-1175. MR 2782835
  • [19] I. Reiner, Maximal orders, London Mathematical Society Monographs. New Series, vol. 28, The Clarendon Press, Oxford University Press, Oxford, 2003. Corrected reprint of the 1975 original; With a foreword by M. J. Taylor. MR 1972204
  • [20] Kenneth Ribet, Sur les variétés abéliennes à multiplications réelles, C. R. Acad. Sci. Paris Sér. A-B 291 (1980), no. 2, A121-A123 (French, with English summary). MR 604997
  • [21] Kenneth A. Ribet, On the component groups and the Shimura subgroup of $ J_0(N)$, Séminaire de Théorie des Nombres, 1987-1988 (Talence, 1987-1988) Univ. Bordeaux I, Talence, [1988?], pp. Exp. No. 6, 10. MR 993107
  • [22] K. A. Ribet, On modular representations of $ \textrm{Gal}(\overline{\textbf{Q}}/\textbf{Q})$ arising from modular forms, Invent. Math. 100 (1990), no. 2, 431-476. MR 1047143
  • [23] Jacques Tilouine, Hecke algebras and the Gorenstein property, Modular forms and Fermat's last theorem (Boston, MA, 1995) Springer, New York, 1997, pp. 327-342. MR 1638483
  • [24] Hwajong Yoo, Rational torsion points on Jacobians of Shimura curves, Bull. Lond. Math. Soc. 48 (2016), no. 1, 163-171. MR 3455760

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11G18

Retrieve articles in all journals with MSC (2010): 11G18


Additional Information

Krzysztof Klosin
Affiliation: Department of Mathematics, Queens College, City University of New York, 65-30 Kissena Boulevard Flushing, New York 11367
Email: kklosin@qc.cuny.edu

Mihran Papikian
Affiliation: Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802
Email: papikian@psu.edu

DOI: https://doi.org/10.1090/proc/14019
Keywords: Modular curves, Ribet's isogeny, Eisenstein ideal, cuspidal divisor group
Received by editor(s): July 19, 2017
Received by editor(s) in revised form: November 13, 2017
Published electronically: February 28, 2018
Additional Notes: The first author was supported by the Young Investigator Grant #H98230-16-1-0129 from the National Security Agency, and by a PSC-CUNY award jointly funded by the Professional Staff Congress and the City University of New York.
The second author was partially supported by grants from the Simons Foundation (245676) and the National Security Agency (H98230-15-1-0008).
Communicated by: Matthew A. Papanikolas
Article copyright: © Copyright 2018 American Mathematical Society

American Mathematical Society