ON THE R_λ-ASSOCIATE OF A LINE

V. G. GROVE

1. Introduction. Popa has shown [4] a method of establishing a one-to-one correspondence between lines through a point of a plane net and lines not through the point. Our purpose is to extend this notion to the asymptotic net on a surface. This extension gives a new manner of describing geometrically the R_λ-associate of a line and the R_λ-derived curves as defined [1] by Bell. A simple characterization of the Darboux-Segre pencil is found.

To fix the notation let the coordinates (x^1, x^2, x^3, x^4) of a generic point x on the surface S be functions of the asymptotic parameters u, v; and let these functions be normalized so that they satisfy the differential equations [2]

$$
x_{uu} = \theta_u x_u + \beta x_v + px,
$$
$$
x_{vv} = \gamma x_u + \theta_v x_v + qx,
$$
$$\theta = \log R.$$

The line joining the points x, x_{uv} is called the R-conjugate line, and that joining x_u, x_v the R-harmonic line of S at x.

Let local coordinates (x_1, x_2, x_3, x_4) referred to the tetrahedron x, x_u, x_v, x_{uv} of a general point X be defined by the formula $X = x_1 x + x_2 x_u + x_3 x_v + x_4 x_{uv}$. Let there be given a curve C through x defined by the differential equation $dv - \lambda du = 0$. The equation of the tangent l to C at x is

$$
\lambda x_2 - x_3 = 0.
$$

Moreover let a point z, not in the tangent plane to S at x, be defined by the expression

$$z = x_{uv} - ax_u - bx_v - cx,$$

and denote by h_1 the line xz. The reciprocal h_2 of h_1 with respect to the quadric of Darboux joins the points r, s defined by

$$r = x_u - bx, \quad s = x_v - ax.$$

2. The R_λ-associate of h_2. Let $y = x(u + \Delta u, v + \Delta v)$ be a point on C near x. The tangent to the asymptotic curve $v = $const. at y intersects the plane determined by h_1 and the tangent to $v = $const. at x in a point, the limit p of whose projection on the tangent plane to S at x
from the point \(z \) as \(y \) approaches \(x \) along \(C \) has coordinates defined by the expression
\[
\rho = x_u - \left(b + \frac{\beta}{\lambda} \right) x.
\]

Similarly a point \(\sigma \), defined by
\[
\sigma = x_u - (a + \gamma \lambda) x,
\]
may be defined. Let the line determined by \(\rho, \sigma \) be denoted by \(h \).

From the form of (2.1), (2.2), it follows that \(h \) is the \(R_\mu \)-associate \([1]\) (\(\mu = -\lambda \)) of \(h_2 \). The equation of \(h \) is readily seen to be
\[
(2.3) \quad x_1 + \left(b + \frac{\beta}{\lambda} \right) x_2 + (a + \gamma \lambda) x_3 = 0, \quad x_4 = 0.
\]

The envelope of \(h \) as \(l \) varies in the pencil on \(x \) is the conic whose equation is
\[
(2.4) \quad (u_2 - bu_1)(u_2 - au_1) = \beta y_2 y_1^2.
\]

This conic is tangent to the asymptotic tangents at \(x \) at their intersections with the line \(h_2 \).

3. Applications. The line \(h \) is tangent to the conic (2.4) at the point \(T \) whose coordinates are
\[
(3.1) \quad (b\gamma \lambda^2 + 2\beta\gamma \lambda + a\beta, -\gamma \lambda^2, -\beta).
\]

The equation of the line \(m \) determined by \(x \) and \(T \) is
\[
(3.2) \quad \beta x_2 - \gamma \lambda^2 x_3 = 0.
\]

The conjugate of \(m \) is readily seen to be the \(R_\lambda \)-correspondent \([1]\) of \(l \); that is, it is the conjugate to the tangent to the \(R_\lambda \)-derived curve through \(x \).

The line \(m \) intersects the conic (2.4) in the points \(T \) and \(T' \), the tangent at the latter point being the \(R_\lambda \)-associate of \(h_2 \).

Comparing (1.2) and (3.2) we observe that \(l \) and \(m \) coincide if and only if \(l \) is a tangent of Segre, and are conjugate if and only if \(l \) is a tangent of Darboux. These theorems are equivalent to Theorems \([4.1]\) and \([4.2]\) of Bell's paper cited in the references.

More generally, one of the cross ratios of the asymptotic tangents and of \(l \) and \(m \) is \(\beta/\gamma \lambda^3 \). Hence all of the tangents to the curves of the Darboux-Segre pencil of conjugate nets are characterized in terms of a constant cross ratio of these four lines.

We find readily that the locus of the intersection of \(l \) and \(h \) as \(l \) varies in the pencil on \(x \) is the rational cubic:
This cubic is a special case of the cubic (8.7) derived in a similar manner by Bell in the paper [1] cited. The points of inflexion of the cubic (3.3) lie on the Darboux tangents, and on the line h_2. We may readily show that the line h is tangent to the cubic if and only if $\lambda^3 = -\beta/\gamma$, that is, if and only if l is a tangent of Darboux. If the line h_1 is the R-conjugate line ($a = b = 0$), the Hessian of the characteristic cubic defined by us [3] is the cubic (3.3).

References