A PROBLEM OF P. A. SMITH

HSIEN-CHUNG WANG

In a paper in this Bulletin,¹ P. A. Smith has mentioned the problem whether in a non-abelian Lie group G there exists a non-countable proper subgroup everywhere dense in G. We can see that a negative answer to this problem is unlikely as the non-existence of such group implies the well known continuum hypothesis. It is the aim of the present short note to show that each separable, locally compact, non-discrete metric group has a subgroup possessing the above properties.

Let G be an abstract group and S a subset of G. The least subgroup of G which contains S will be called the group closure of S and denoted by $\text{gcl}(S)$. Evidently, $\text{gcl}(S)$ consists of all the finite products of the elements of S and their inverses. It follows immediately that $S = \text{gcl}(S)$ if and only if S forms a subgroup of G.

Suppose R to be a subset of G and p an element of G such that p does not belong to the group closure $\text{gcl}(R)$ of R. Using Zorn's Theorem² which is equivalent to the Axiom of Choice, we can construct a subset H of G having the following properties:

(i) H forms a subgroup of G;
(ii) H contains R but does not contain p;
(iii) if t is an element of G not belonging to H, then p is contained in the group closure $\text{gcl}(H \cup t)$ of the union $H \cup t$. In general, there exists more than one such subgroup H. We shall call each of them a maximal subgroup including R but excluding p.

Now let us consider a separable, locally compact, nondiscrete metric group G. We choose, in G, a countable everywhere dense subset R. The group closure $\text{gcl}(R)$ of R is also countable. However, the group G, being nondiscrete, is a perfect space. Therefore, G must be non-countable, for otherwise it would be homeomorphic with the set of all rational numbers³ which is not locally compact. It follows that there exists an element p of G which does not belong to $\text{gcl}(R)$. We can construct a maximal subgroup H including R but excluding p. Evidently, H forms a proper, everywhere dense subgroup of G.

We shall show that H is non-countable. For this purpose, let us

Received by the editors October 27, 1948.

consider equations of the form

\[p = z^{m_1}h_{1}z^{m_2}h_{2} \cdots h_{r}z^{m_{r+1}} \]

where \(m_i \ (i = 1, 2, \cdots) \) denote integers, \(h_i \) elements in \(H \), and \(z \) the unknown. The set \(C \) of solutions of such an equation is closed in \(G \), and from the maximal property of \(H \), \(C \) belongs to the complement \(G - H \) of \(H \). Since \(H \) is everywhere dense, \(C \) is nowhere dense.

Suppose \(H \) to be countable. Then the aggregate of all equations of the form (1) is countable as well. Thus the union \(Z = \bigcup C \) of all the possible \(C \)'s is a set of the first category. Moreover, we can easily see that \(Z \) coincides with the complement \(G - H \) of \(H \). On the other hand, \(H \) is countable and \(G \) perfect, so that \(H \) is nowhere dense in \(G \). It follows then that \(G = H + Z \) is of the first category in itself. This contradicts the fact that \(G \) is a locally compact metric space. Therefore, \(H \) cannot be countable and we arrive at the following:

In any separable, locally compact, non-discrete metric group \(G \), there always exists a non-countable proper subgroup filling \(G \) densely.\(^4\)

\(^4\) The author wishes to express his sincere thanks to Professor D. Montgomery for his valuable suggestions which enable the author to prove the theorem under much weaker condition for \(G \) than a Lie group.