ON FAITHFUL REPRESENTATIONS OF LIE GROUPS

HARISH-CHANDRA

Let G and H be two connected Lie groups and ϕ a continuous homomorphism of H into the group of automorphisms of G. Then we define a new group $G \times_\phi H$ as follows. The elements of $G \times_\phi H$ are pairs (g, h) ($g \in G, h \in H$) and group multiplication is defined by

$$(g_1, h_1)(g_2, h_2) = (g_1(\phi(h_1)g_2), h_1h_2).$$

Topologically $G \times_\phi H$ is taken to be just the Cartesian product of G and H. It is then easily proved that under this topology $G \times_\phi H$ is a Lie group. It is called the semidirect product of G and H under ϕ. The object of this note is to prove the following theorem.

Theorem. Let G be a connected, simply connected solvable Lie group and H a connected Lie group which has a faithful representation. Let ϕ be any continuous homomorphism of H into the group of automorphisms of G. Then $G \times_\phi H$ has a faithful representation.

The special case of this theorem when H is semisimple is due to Cartan.¹

Let R be the field of real numbers and K the field of either real or complex numbers. Let G be a connected Lie group with the Lie algebra \mathfrak{g} and θ a representation of G over K of degree d. Then we denote by $d\theta$ the representation of \mathfrak{g} given by²

$$d\theta(x) = \lim_{t \to 0} \frac{\theta(\exp tX) - I}{t} \quad (X \in \mathfrak{g})$$

where $t \in R$ and I is the unit matrix of degree d. Let $GL(K, d)$ denote the group of all nonsingular matrices of degree d with coefficients in K. Any subgroup of $GL(K, d)$ will be called a linear group of degree d. Let θ be the identity representation of a linear Lie group G with the Lie algebra \mathfrak{g} so that $\theta(x) = x$ ($x \in G$). Then $d\theta$ is a faithful representation of \mathfrak{g} and $\exp d\theta(X) = \theta(\exp X) = \exp X$ for any $x \in \mathfrak{g}$. Hence we may identify \mathfrak{g} with $d\theta(\mathfrak{g})$ under $d\theta$. \mathfrak{g} can therefore be regarded as a linear Lie algebra. In particular the Lie algebra of $GL(K, d)$ then

² For the precise definitions of the terms used in this paper see Chevalley, Theory of Lie groups, Princeton University Press, 1946.
consists of all matrices of degree \(d \) with coefficients in \(K \). We denote it by \(\mathfrak{gl}(K, d) \). Given any subalgebra \(\mathfrak{h} \subseteq \mathfrak{gl}(K, d) \), by the linear Lie group generated by \(\mathfrak{h} \) we mean the analytic subgroup of \(GL(K, d) \) corresponding to \(\mathfrak{h} \).

Let us call a matrix subtriangular if it has zeros on and below the diagonal. First we state the following two well known lemmas.

Lemma 1. Let \(\mathfrak{H} \) be the Lie algebra of all subtriangular \(d \times d \) matrices over \(K \) and let \(G \) be the linear Lie group generated by \(\mathfrak{H} \). Then \(X \mapsto \exp X \) is a topological mapping of \(\mathfrak{H} \) onto \(G \). Also \(G \) consists of all matrices which have zeros below the diagonal and 1 everywhere on the diagonal.

Lemma 2. Let \(G \) be a connected, simply connected solvable Lie group. Then every analytic subgroup of \(G \) is closed and simply connected.

From now on I adhere strictly to the notation of my paper, *Faithful representations of Lie algebras*, which will be quoted as FRL.

Lemma 3. Let \(\mathfrak{L}, \mathfrak{H}, \mathfrak{D} \) be as in Lemma 1 of FRL. We construct the faithful representation \(\theta \) of \(\mathfrak{L} + \mathfrak{D} \) as described there. Then for any \(Y_1, \ldots, Y_s \in \mathfrak{L} \) and \(D_1, \ldots, D_s \in \mathfrak{D} \),

1. \(\exp \theta(Y_1) \cdots \exp \theta(Y_s) \neq I \) unless \(\exp Y_1 \cdots \exp Y_s = I'' \),
2. \(\exp \theta(D_1) \cdots \exp \theta(D_s) = I \)

if and only if \(\exp D_1 \cdots \exp D_s = I' \),

where \(I, I', \) and \(I'' \) are unit matrices of suitable degrees.

If we use the notation of the proof of Lemma 1 of FRL, (1) follows immediately from the fact that \(\mathfrak{L}/\mathfrak{L} \cong \mathfrak{L}/\mathfrak{L}_0 \) where \(\mathfrak{L}_0 = \mathfrak{L} \cap \mathfrak{H}_0 \). Now we prove (2). Put \(\omega^*(X) = (\omega(X))^* \) for \(X \in \mathfrak{L} \). Then it is easily proved by induction on \(s \) that for any \(D \in \mathfrak{D} \)

\[
\left\{ \theta(D) \right\}^s \omega^*(X) = \omega^*(D^s X), \quad s \geq 1.
\]

Hence \(\exp \theta(D) \omega^*(X) = \omega^*(\exp D X) \). Also since \(\theta(D) = d_{D\mathfrak{L}}^\theta \) is a derivation of \(\mathfrak{L}^* = \mathfrak{L}/\mathfrak{L}_0 \), \(\exp \theta(D) \) is an automorphism of \(\mathfrak{L}^* \). Put \(Y_X = (\exp D_1) \cdots (\exp D_s) X (X \in \mathfrak{L}) \). Then if \(\exp \theta(D_1) \cdots \exp \theta(D_s) = I \),

\[
\omega^*(Y_X) - \omega^*(X) = 0 \quad \text{for every } X \in \mathfrak{L}.
\]

Hence \(\omega(Y_X - X) \in \mathfrak{L}_0 \subseteq \mathfrak{L} \). Therefore \(\pi \omega(Y_X - X) = Y_X - X = 0 \). Since this is true for every \(X \),

Let G be a connected, simply connected solvable Lie group with Lie algebra \mathfrak{g}. Let \mathfrak{m} be the maximal nilpotent ideal of \mathfrak{g}. Then G has a faithful representation ψ such that $d\psi(X)$ is nilpotent for every $X \in \mathfrak{m}$.

By Corollary 1 of FRL we can find a faithful representation ρ_0 of \mathfrak{g} such that $\rho_0(X)$ is nilpotent for every $X \in \mathfrak{m}$. We can therefore choose, if necessary, a new base in our representation space such that with respect to this base the matrix representing $\rho_0(X)$ is subtriangular for every $X \in \mathfrak{m}$. Now consider the factor algebra $\mathfrak{g}/\mathfrak{m}$ which is abelian and hence nilpotent. By the same corollary it follows that $\mathfrak{g}/\mathfrak{m}$ has a faithful representation by nilpotent matrices. Hence \mathfrak{g} has a representation ρ_1 such that the kernel of ρ_1 is \mathfrak{m} and $\rho_1(X)$ is nilpotent for all $X \in \mathfrak{g}$. We can again arrange that $\rho_1(X)$ is subtriangular for all X. Put $\rho = \rho_0 + \rho_1$, where $+$ denotes direct sum. Since G is simply connected, there exist representations ψ_0 and ψ_1 of G such that $d\psi_0 = \rho_0$, $d\psi_1 = \rho_1$. Put $\psi = \psi_0 + \psi_1$. Then $d\psi = \rho$. Let N be the analytic subgroup of G corresponding to \mathfrak{m}. Then from Lemma 2, N is a closed invariant subgroup. Consider $\psi(N)$. It is clear that $d\psi(Y) = \rho_0(Y) + \rho_1(Y)$ is subtriangular for all $Y \in \mathfrak{m}$. Hence from Lemmas 1 and 2 it follows that the linear Lie group $\psi(N)$ generated by $d\psi(\mathfrak{m})$ is simply connected. Since $d\psi$ is an isomorphism, $\psi(N)$ is locally isomorphic to N. Therefore since $\psi(N)$ is simply connected, ψ maps N isomorphically. Similarly we prove that $\psi_1(G)$ is simply connected. It is clear that the kernel of ψ_1 contains N. Hence ψ_1 defines a representation ψ^* of G/N given by $\psi^*(x) = \psi_1(x)$ where $x \to x^*$ is the natural homomorphism of G onto $G/N = G^*$. Since $d\psi^*$ is an isomorphism, the kernel of $d\psi_1 = \rho_1$ being \mathfrak{m}, it follows from the simple connectivity of $\psi^*(G^*) = \psi_1(G)$ that ψ^* is an isomorphism. Hence the kernel of ψ_1 is exactly N. Let D be the kernel of ψ. Then D is contained in the kernel of ψ_1 which is N. Also since ψ is faithful on N, $D \cap N = \{e\}$ where e is the unit element of N. Hence $D = \{e\}$ and ψ is a faithful representation. Also $d\psi(X)$ is nilpotent for every $X \in \mathfrak{m}$.

Now we come to the proof of the theorem. Let \mathfrak{g} be the Lie algebra of G and \mathfrak{m} the maximal nilpotent ideal of \mathfrak{g}. By Lemma 4, G has a faithful representation. Hence we may assume that G is a linear Lie group such that every element of \mathfrak{m} is nilpotent. We keep to the notation of Lemma 3 except that \mathfrak{g} is replaced by \mathfrak{g}. Let \mathfrak{h} be the Lie algebra of H. Define a homomorphism $d\tau$ of \mathfrak{h} into \mathfrak{d} as follows. Let

$$(\exp D_1) \cdots (\exp D_n) = I'.$$ The converse is obvious. Hence the lemma is proved.
Aut (G) be the group of automorphisms of G. Then Aut (G) is a Lie group with a Lie algebra \mathfrak{g}. It is well known that there exists an isomorphism λ of \mathfrak{g} onto \mathfrak{g} such that

$$(\exp A) \exp X = \exp ((\exp \lambda(A))X)$$

for any $A \in \mathfrak{g}$ and $X \in \mathfrak{g}$. We put $d\tau = \lambda d\phi$ where $d\phi$ is the homomorphism of \mathfrak{h} into \mathfrak{g} induced by ϕ. Then for any $P_i \in \mathfrak{h}$, $1 \leq i \leq r$,

$$\phi(\exp P_1 \cdots \exp P_r) \exp X = \exp ((\exp d\tau(P_1) \cdots \exp d\tau(P_r))X).$$

Let e and e' denote the identity elements of G and H respectively. Suppose $\exp P_1 \cdots \exp P_r = e'$. Then clearly

$$\exp X = \phi(\exp P_1 \cdots \exp P_r) \exp X = \exp ((\exp d\tau(P_1) \cdots \exp d\tau(P_r))X).$$

Since this is true for every $X \in \mathfrak{g}$,

$$\exp d\tau(P_1) \cdots \exp d\tau(P_r) = I'.$$

Hence we can define a representation τ of H by the rule

$$\tau(\exp P_1 \cdots \exp P_r) = \exp d\tau(P_1) \cdots \exp d\tau(P_r) \quad (P_1, \cdots, P_r \in \mathfrak{h}).$$

Put $d\psi = \theta d\tau$. Then $d\psi$ is a representation of \mathfrak{h}. Suppose $\exp P_1 \cdots \exp P_r = e' \quad (P_1, \cdots, P_r \in \mathfrak{h})$. Then

$$\tau(\exp P_1 \cdots \exp P_r) = \exp d\tau(P_1) \cdots \exp d\tau(P_r) = I'$$

and from Lemma 3

$$\exp d\psi(P_1) \cdots \exp d\psi(P_r) = I.$$

Hence we can again define a representation ψ of H by putting

$$\psi(\exp P_1 \cdots \exp P_r) = \exp d\psi(P_1) \cdots \exp d\psi(P_r) \quad (P_1, \cdots, P_r \in \mathfrak{h}).$$

Also since G is simply connected there exists a representation χ of G such that $d\chi(X) = \theta(X)$ for every $X \in \mathfrak{g}$. Hence

$$\chi(\exp Y_1 \cdots \exp Y_r) = \exp \theta(Y_1) \cdots \exp \theta(Y_r) \quad (Y_i \in \mathfrak{g}, 1 \leq i \leq r).$$

From Lemma 3 it follows that χ is faithful.

Consider the mapping μ of $G \times_H H$ defined by $\mu(g, h) = \chi(g)\psi(h)$. We claim that μ is a representation. For any $P \in \mathfrak{h}$ and $X \in \mathfrak{g}$ consider

$$\psi(\exp P)\chi(\exp X)(\psi(\exp P))^{-1} = \exp d\psi(P) \exp \theta(X) \exp (-d\psi(P)) = \exp \theta(D) \exp \theta(X) \exp (-\theta(D))$$

where $D = d\tau(P)$. Now for any two elements A, $B \in \mathfrak{gl}(K, d)$,
\[\exp A \exp B \exp (-A) = \exp (\exp \text{ad} A)B \]

where \(\text{ad} A \) is defined as in FRL. Since \([\theta(D), \theta(Y)] = \theta([D, Y]) = \theta(DY)\) for any \(Y \in g \), it follows immediately that

\[\exp \theta(D) \exp \theta(X) \exp (-\theta(D)) = \exp \theta((\exp X)Y) \]

\[= \exp \theta(\tau(\exp P)X) \]

\[= \chi(\exp \tau(\exp P)X) \]

Since any \(h \in H \) can be written in the form \(\exp P_1 \cdots \exp P_r \), \(P_i \in \mathfrak{h}, 1 \leq i \leq r, r \geq 1 \), we get

\[\psi(h) \chi(\exp X)(\psi(h))^{-1} = \chi(\phi(h) \exp X). \]

Similarly since every \(g \in G \) can be written as \(\exp Y_1 \cdots \exp Y_r \), \(Y_i \in g, 1 \leq i \leq r, r \geq 1 \), we have

\[\psi(h) \chi(g)(\psi(h))^{-1} = \chi(\phi(h)g). \]

Therefore

\[\mu((g_1, h_1)(g_2, h_2)) = \mu(g_1 \phi(h_1)g_2, h_1h_2) = \chi(g_1 \phi(h_1)g_2)\psi(h_1h_2) \]

\[= \chi(g_1)\chi(\phi(h_1)g_2)\psi(h_1)\psi(h_2) \]

\[= \chi(g_1)\psi(h_1)\chi(g_2)\psi(h_2) = \mu(g_1, h_1)\mu(g_2, h_2). \]

Since \(\mu \) is clearly a continuous mapping it is a representation of \(G \times_{\phi} H \). By hypothesis \(H \) has a faithful representation \(\nu_0 \). Define a representation \(\nu \) of \(G \times_{\phi} H \) by \(\nu(g, h) = \nu_0(h) \) and put \(\xi = \mu + \nu \). Suppose \((g, h) \) belongs to the kernel of \(\xi \). Then since \(\xi(g, h) = \mu(g, h) + \nu_0(h) = \chi(g)\psi(h) + \nu_0(h) \) and since \(\nu_0 \) is faithful on \(H \), \(h = e' \). Hence \(g \) belongs to the kernel of \(\chi \). But as \(\chi \) is faithful on \(G \), \(g = e \). Therefore \((g, h) = (e, e') \) and \(\xi \) is faithful on \(G \times_{\phi} H \).

Corollary (Malcev). A connected solvable Lie group \(G \) has a faithful representation if and only if \(G = NA \), where \(N \) is a closed, connected, simply connected invariant subgroup and \(A \) is a connected, compact abelian subgroup such that \(N \cap A = \{e\} \).

Suppose \(G = NA \). For any \(a \in A \) let \(\phi(a) \) denote the automorphism of \(N \) given by \(\phi(a)n = ana^{-1} \) (\(n \in N \)). Then it is easily seen that \((n, a) \rightarrow na \) is an isomorphism of \(N \times_{\phi} A \) onto \(G \). Since \(A \) is compact, it has a faithful representation. Hence by the above theorem it follows immediately that \(G \) has a faithful representation.

In order to establish the converse we make use of the following lemma which follows easily from the results of Chevalley.\(^4\)
Lemma 5. If G is a connected solvable Lie group and N a closed, connected invariant subgroup such that G/N is compact, then there exists a compact connected abelian subgroup A of G such that $G=AN$ and $A\cap N$ is finite.

Returning to the corollary, suppose G is linear. Since \mathfrak{g} is solvable, we deduce in the usual way that every element $X \in [\mathfrak{g}, \mathfrak{g}]=\mathfrak{g}'$ is nilpotent and therefore may be assumed to be subtriangular. Therefore by Lemmas 1 and 2 the group G' generated by \mathfrak{g}' is simply connected. Let \hat{d} be the degree of G and G_0 the group of all matrices in $GL(K, \hat{d})$ which have zero below the diagonal and 1 everywhere on the diagonal. By Lemma 2, G' is closed in G_0. However, since G_0 is clearly closed in $GL(K, \hat{d})$, G' is closed in $GL(K, \hat{d})$ and therefore in G. Let $x \rightarrow x^*$ denote the natural homomorphism of G onto $G/G'=G^*$. Since G^* is abelian, $G^*=T^*V^*$ where T^* and V^* are connected subgroups, T^* being compact and V^* simply connected and $T^*\cap V^* = \{e^*\}$. Let N be the complete inverse image of V^* in G. Since $N/G'=V^*$ and G' are both simply connected, N is simply connected and $G/N\cong T^*$ is compact. Therefore by Lemma 5, $G=AN$ where A is compact, connected, and abelian and $A\cap N$ is finite. Let $\sigma \in A\cap N$. Then $\sigma^r=e$ for some $r \geq 1$. Then $\sigma^* \in V^*$ and $(\sigma^*)^r = e^*$. Since V^* is simply connected and abelian, $\sigma^* = e^*$. Hence $\sigma \in A\cap G'$. Since $X \rightarrow \exp X$ is a topological mapping of \mathfrak{g}' onto G', it follows that $\sigma \in G'$, $\sigma^r=e$ implies $\sigma=e$. Hence $A\cap N=\{e\}$. The corollary is therefore proved.

Institute for Advanced Study

This lemma was pointed out to me by Dr. G. D. Mostow.