ON FAITHFUL REPRESENTATIONS OF LIE GROUPS

HARISH-CHANDRA

Let G and H be two connected Lie groups and ϕ a continuous homomorphism of H into the group of automorphisms of G. Then we define a new group $G \times_\phi H$ as follows. The elements of $G \times_\phi H$ are pairs (g, h) $(g \in G, h \in H)$ and group multiplication is defined by

$$(g_1, h_1)(g_2, h_2) = (g_1(\phi(h_1)g_2), h_1h_2).$$

Topologically $G \times_\phi H$ is taken to be just the Cartesian product of G and H. It is then easily proved that under this topology $G \times_\phi H$ is a Lie group. It is called the semidirect product of G and H under ϕ. The object of this note is to prove the following theorem.

Theorem. Let G be a connected, simply connected solvable Lie group and H a connected Lie group which has a faithful representation. Let ϕ be any continuous homomorphism of H into the group of automorphisms of G. Then $G \times_\phi H$ has a faithful representation.

The special case of this theorem when H is semisimple is due to Cartan.¹

Let R be the field of real numbers and K the field of either real or complex numbers. Let G be a connected Lie group with the Lie algebra g and θ a representation of G over K of degree \hat{d}. Then we denote by $d\theta$ the representation of g given by²

$$d\theta(x) = \lim_{t \to 0} \frac{\theta(exp tx) - I}{t} \quad (X \in g)$$

where $t \in R$ and I is the unit matrix of degree \hat{d}. Let $GL(K, \hat{d})$ denote the group of all nonsingular matrices of degree \hat{d} with coefficients in K. Any subgroup of $GL(K, \hat{d})$ will be called a linear group of degree \hat{d}. Let θ be the identity representation of a linear Lie group G with the Lie algebra g so that $\theta(x) = x$ $(x \in G)$. Then $d\theta$ is a faithful representation of g and $\exp d\theta(X) = \theta(\exp X) = \exp X$ for any $x \in g$. Hence we may identify g with $d\theta(g)$ under $d\theta$. g can therefore be regarded as a linear Lie algebra. In particular the Lie algebra of $GL(K, \hat{d})$ then

² For the precise definitions of the terms used in this paper see Chevalley, *Theory of Lie groups*, Princeton University Press, 1946.

205
consists of all matrices of degree d with coefficients in K. We denote it by $gl(K, d)$. Given any subalgebra $\mathfrak{h} \subset gl(K, d)$, by the linear Lie group generated by \mathfrak{h} we mean the analytic subgroup of $GL(K, d)$ corresponding to \mathfrak{h}.

Let us call a matrix subtriangular if it has zeros on and below the diagonal. First we state the following two well known lemmas.

Lemma 1. Let \mathfrak{g} be the Lie algebra of all subtriangular $d \times d$ matrices over K and let G be the linear Lie group generated by \mathfrak{g}. Then $X \mapsto \exp X$ is a topological mapping of \mathfrak{g} onto G. Also G consists of all matrices which have zeros below the diagonal and 1 everywhere on the diagonal.

Lemma 2. Let G be a connected, simply connected solvable Lie group. Then every analytic subgroup of G is closed and simply connected.

From now on I adhere strictly to the notation of my paper, Faithful representations of Lie algebras, which will be quoted as FRL.

Lemma 3. Let $\mathfrak{g}, \mathfrak{h}, \mathfrak{d}$ be as in Lemma 1 of FRL. We construct the faithful representation θ of $\mathfrak{g} \oplus \mathfrak{d}$ as described there. Then for any $Y_1, \cdots, Y_s \in \mathfrak{g}$ and $D_1, \cdots, D_s \in \mathfrak{d}$,

1. $\exp \theta(Y_1) \cdots \exp \theta(Y_s) \neq I$ unless $\exp Y_1 \cdots \exp Y_s = I'$,
2. $\exp \theta(D_1) \cdots \exp \theta(D_s) = I$ if and only if $\exp D_1 \cdots \exp D_s = I'$,

where I, I', I'' are unit matrices of suitable degrees.

If we use the notation of the proof of Lemma 1 of FRL, (1) follows immediately from the fact that $\mathfrak{a}/\mathfrak{x} \cong \mathfrak{a}^*/\mathfrak{x}^*$, where $\mathfrak{x}^* = \mathfrak{x}/\mathfrak{x}_0$. Now we prove (2). Put $\omega^*(X) = (\omega(X))^*$ for $X \in \mathfrak{g}$. Then it is easily proved by induction on s that for any $D \in \mathfrak{d}$

$$\{\theta(D)\}^s \omega^*(X) = \omega^*(D^s X), \quad s \geq 1.$$

Hence $(\exp \theta(D)) \omega^*(X) = \omega^*((\exp D) X)$. Also since $\theta(D) = d^b_D$ is a derivation of $\mathfrak{a}^* = \mathfrak{a}/\mathfrak{x}_0$, $\exp \theta(D)$ is an automorphism of \mathfrak{a}^*. Put $Y_X = (\exp D_1) \cdots (\exp D_s) X$ $(X \in \mathfrak{g})$. Then if

$$\exp \theta(D_1) \cdots \exp \theta(D_s) = I,$$

$$\omega^*(Y_X) - \omega^*(X) = 0$$

for every $X \in \mathfrak{g}$. Hence $\omega(Y_X - X) \in \mathfrak{x}_0 \subset \mathfrak{x}$. Therefore $\pi \omega(Y_X - X) = Y_X - X = 0$. Since this is true for every X,

LEMMA 4. Let G be a connected, simply connected solvable Lie group with Lie algebra \mathfrak{g}. Let \mathfrak{M} be the maximal nilpotent ideal of \mathfrak{g}. Then G has a faithful representation ψ such that $d\psi(X)$ is nilpotent for every $X \in \mathfrak{M}$.

By Corollary 1 of FRL we can find a faithful representation ρ_0 of \mathfrak{g} such that $\rho_0(X)$ is nilpotent for every $X \in \mathfrak{M}$. We can therefore choose, if necessary, a new base in our representation space such that with respect to this base the matrix representing $\rho_0(X)$ is subtriangular for every $X \in \mathfrak{M}$. Now consider the factor algebra $\mathfrak{g}/\mathfrak{M}$ which is abelian and hence nilpotent. By the same corollary it follows that $\mathfrak{g}/\mathfrak{M}$ has a faithful representation by nilpotent matrices. Hence \mathfrak{g} has a representation ρ_1 such that the kernel of ρ_1 is \mathfrak{M} and $\rho_1(X)$ is nilpotent for all $X \in \mathfrak{g}$. We can again arrange that $\rho_1(X)$ is subtriangular for all X. Put $\rho = \rho_0 + \rho_1$, where ρ denotes direct sum. Since G is simply connected, there exist representations ψ_0 and ψ_1 of G such that $d\psi_0 = \rho_0$, $d\psi_1 = \rho_1$. Put $\psi = \psi_0 + \psi_1$. Then $d\psi = \rho$. Let N be the analytic subgroup of G corresponding to \mathfrak{M}. Then from Lemma 2, N is a closed invariant subgroup. Consider $\psi(N)$. It is clear that $d\psi(Y) = \rho_0(Y) + \rho_1(Y)$ is subtriangular for all $Y \in \mathfrak{M}$. Hence from Lemmas 1 and 2 it follows that the linear Lie group $\psi(N)$ generated by $d\psi(\mathfrak{M})$ is simply connected. Since $d\psi$ is an isomorphism, $\psi(N)$ is locally isomorphic to N. Therefore since $\psi(N)$ is simply connected, ψ maps N isomorphically. Similarly we prove that $\psi_1(G)$ is simply connected. It is clear that the kernel of ψ_1 contains N. Hence ψ_1 defines a representation ψ^* of G/N given by $\psi^*(x^*) = \psi_1(x)$ where $x \to x^*$ is the natural homomorphism of G onto $G/N = G^*$. Since $d\psi^*$ is an isomorphism, the kernel of $d\psi_1 = \rho_1$ being \mathfrak{M}, it follows from the simple connectivity of $\psi^*(G^*) = \psi_1(G)$ that ψ^* is an isomorphism. Hence the kernel of ψ_1 is exactly N. Let D be the kernel of ψ. Then D is contained in the kernel of ψ_1 which is N. Also since ψ is faithful on N, $D \cap N = \{e\}$ where e is the unit element of N. Hence $D = \{e\}$ and ψ is a faithful representation. Also $d\psi(X)$ is nilpotent for every $X \in \mathfrak{M}$.

Now we come to the proof of the theorem. Let \mathfrak{g} be the Lie algebra of G and \mathfrak{M} the maximal nilpotent ideal of \mathfrak{g}. By Lemma 4, G has a faithful representation. Hence we may assume that G is a linear Lie group such that every element of \mathfrak{M} is nilpotent. We keep to the notation of Lemma 3 except that \mathfrak{Q} is replaced by \mathfrak{g}. Let \mathfrak{h} be the Lie algebra of H. Define a homomorphism $d\tau$ of \mathfrak{h} into \mathfrak{D} as follows. Let

$$(\exp D_1) \cdots (\exp D_n) = I'.$$ The converse is obvious. Hence the lemma is proved.
Aut (G) be the group of automorphisms of G. Then Aut (G) is a Lie group with a Lie algebra \(\mathfrak{g} \). It is well known that there exists an isomorphism \(\lambda \) of \(\mathfrak{g} \) onto \(\mathfrak{h} \) such that

\[
\exp A \exp X = \exp ((\exp \lambda(A))X)
\]

for any \(A \in \mathfrak{g} \) and \(X \in \mathfrak{g} \). We put \(d\tau = \lambda d\phi \) where \(d\phi \) is the homomorphism of \(\mathfrak{h} \) into \(\mathfrak{g} \) induced by \(\phi \). Then for any \(P_i \in \mathfrak{h} \), \(1 \leq i \leq r \),

\[
\phi(\exp P_1 \cdots \exp P_r) \exp X = \exp ((\exp d\tau(P_1) \cdots \exp d\tau(P_r))X).
\]

Let \(e \) and \(e' \) denote the identity elements of \(G \) and \(H \) respectively. Suppose \(\exp P_1 \cdots \exp P_r = e' \). Then clearly

\[
\exp X = \phi(\exp P_1 \cdots \exp P_r) \exp X = \exp ((\exp d\tau(P_1) \cdots \exp d\tau(P_r))X).
\]

Since this is true for every \(X \in \mathfrak{g} \),

\[
\exp d\tau(P_1) \cdots \exp d\tau(P_r) = I'.
\]

Hence we can define a representation \(\tau \) of \(H \) by the rule

\[
\tau(\exp P_1 \cdots \exp P_r) = \exp d\tau(P_1) \cdots \exp d\tau(P_r) \quad (P_1, \cdots, P_r \in \mathfrak{h}).
\]

Put \(d\psi = \theta d\tau \). Then \(d\psi \) is a representation of \(\mathfrak{h} \). Suppose \(\exp P_1 \cdots \exp P_r = e' \) \((P_1, \cdots, P_r \in \mathfrak{h}) \). Then

\[
\tau(\exp P_1 \cdots \exp P_r) = \exp d\tau(P_1) \cdots \exp d\tau(P_r) = I'
\]

and from Lemma 3

\[
\exp d\psi(P_1) \cdots \exp d\psi(P_r) = I.
\]

Hence we can again define a representation \(\psi \) of \(H \) by putting

\[
\psi(\exp P_1 \cdots \exp P_r) = \exp d\psi(P_1) \cdots \exp d\psi(P_r) \quad (P_1, \cdots, P_r \in \mathfrak{h}).
\]

Also since \(G \) is simply connected there exists a representation \(\chi \) of \(G \) such that \(d\chi(X) = \theta(X) \) for every \(X \in \mathfrak{g} \). Hence

\[
\chi(\exp Y_1 \cdots \exp Y_r) = \exp \theta(Y_1) \cdots \exp \theta(Y_r) \quad (Y_i \in \mathfrak{g}, 1 \leq i \leq r).
\]

From Lemma 3 it follows that \(\chi \) is faithful.

Consider the mapping \(\mu \) of \(G \times H \) defined by \(\mu(g, h) = \chi(g)\psi(h) \).

We claim that \(\mu \) is a representation. For any \(P \in \mathfrak{h} \) and \(X \in \mathfrak{g} \) consider

\[
\psi(\exp P)\chi(\exp X)(\psi(\exp P))^{-1} = \exp d\psi(P) \exp \theta(X) \exp (-d\psi(P)) = \exp \theta(D) \exp \theta(X) \exp (-\theta(D))
\]

where \(D = d\tau(P) \). Now for any two elements \(A, B \in \mathfrak{gl}(K, d) \),
\[\exp A \exp B \exp (-A) = \exp ((\exp \text{ad} A)B) \]

where \(\text{ad} A \) is defined as in FRL. Since \([\theta (D), \theta (Y)] = \theta ([D, Y]) = \theta (DY) \) for any \(Y \in g \), it follows immediately that

\[
\exp \theta(D) \exp \theta(X) \exp (-\theta(D)) = \exp \theta((\exp D)X)
= \exp \theta(\tau (\exp P) X)
= \chi (\exp \tau (\exp P) X)
= \chi (\phi (\exp P) \exp X).
\]

Since any \(h \in H \) can be written in the form \(\exp P_1 \cdots \exp P_r \), \(P_i \in h, 1 \leq i \leq r, r \geq 1, \) we get

\[
\psi (h) \chi (\exp X) (\psi (h))^{-1} = \chi (\phi (h) \exp X).
\]

Similarly since every \(g \in G \) can be written as \(\exp Y_1 \cdots \exp Y_r \), \(Y_i \in g, 1 \leq i \leq r, r \geq 1, \) we have

\[
\psi (h) \chi (g) (\psi (h))^{-1} = \chi (\phi (h) g).
\]

Therefore

\[
\mu ((g_1, h_1) (g_2, h_2)) = \mu (g_1 \phi (h_1) g_2, h_1 h_2) = \chi (g_1 \phi (h_1) g_2) \psi (h_1 h_2)
= \chi (g_1) \chi (\phi (h_1) g_2) \psi (h_1) \psi (h_2)
= \chi (g_1) \psi (h_1) \chi (g_2) \psi (h_2) = \mu (g_1, h_1) \mu (g_2, h_2).
\]

Since \(\mu \) is clearly a continuous mapping it is a representation of \(G \times \phi H \). By hypothesis \(H \) has a faithful representation \(\nu_0 \). Define a representation \(\nu \) of \(G \times \phi H \) by \(\nu (g, h) = \nu_0 (h) \) and put \(\xi = \mu + \nu \). Suppose \((g, h) \) belongs to the kernel of \(\xi \). Then since \(\xi (g, h) = \mu (g, h) + \nu_0 (h) = \chi (g) \psi (h) + \nu_0 (h) \) and since \(\nu_0 \) is faithful on \(H, h = e' \). Hence \(g \) belongs to the kernel of \(\chi \). But as \(\chi \) is faithful on \(G, g = e. \) Therefore \((g, h) = (e, e') \) and \(\xi \) is faithful on \(G \times \phi H \).

Corollary (Malcev).

A connected solvable Lie group \(G \) has a faithful representation if and only if \(G = NA \), where \(N \) is a closed, connected, simply connected invariant subgroup and \(A \) is a connected, compact abelian subgroup such that \(N \cap A = \{ e \} \).

Suppose \(G = NA \). For any \(a \in A \) let \(\phi (a) \) denote the automorphism of \(N \) given by \(\phi (a) n = ana^{-1} (n \in N) \). Then it is easily seen that \((n, a) \rightarrow na \) is an isomorphism of \(N \times A \) onto \(G \). Since \(A \) is compact, it has a faithful representation. Hence by the above theorem it follows immediately that \(G \) has a faithful representation.

In order to establish the converse we make use of the following lemma which follows easily from the results of Chevalley.
Lemma 5. If G is a connected solvable Lie group and N a closed, connected invariant subgroup such that G/N is compact, then there exists a compact connected abelian subgroup A of G such that $G=AN$ and $A\cap N$ is finite.

Returning to the corollary, suppose G is linear. Since \mathfrak{g} is solvable, we deduce in the usual way that every element $X \in [\mathfrak{g}, \mathfrak{g}]=\mathfrak{g}'$ is nilpotent and therefore may be assumed to be subtriangular. Therefore by Lemmas 1 and 2 the group G' generated by \mathfrak{g}' is simply connected. Let \hat{d} be the degree of G and G_0 the group of all matrices in $GL(K, \hat{d})$ which have zero below the diagonal and 1 everywhere on the diagonal. By Lemma 2, G' is closed in G_0. However, since G_0 is clearly closed in $GL(K, \hat{d})$, G' is closed in $GL(K, \hat{d})$ and therefore in G. Let $x \rightarrow x^*$ denote the natural homomorphism of G onto $G/G' = G^*$. Since G^* is abelian, $G^* = T^*V^*$ where T^* and V^* are connected subgroups, T^* being compact and V^* simply connected and $T^* \cap V^* = \{e^*\}$. Let N be the complete inverse image of V^* in G. Since $N/G' = V^*$ and G' are both simply connected, N is simply connected and $G/N \cong T^*$ is compact. Therefore by Lemma 5, $G = AN$ where A is compact, connected, and abelian and $A \cap N$ is finite. Let $\sigma \in A \cap N$. Then $\sigma^r = e$ for some $r \geq 1$. Then $\sigma^* \in V^*$ and $(\sigma^*)^r = e^*$. Since V^* is simply connected and abelian, $\sigma^* = e^*$. Hence $\sigma \in A \cap G'$. Since $X \rightarrow \exp X$ is a topological mapping of \mathfrak{g}' onto G', it follows that $\sigma \in G'$, $\sigma^r = e$ implies $\sigma = e$. Hence $A \cap N = \{e\}$. The corollary is therefore proved.

Institute for Advanced Study

* This lemma was pointed out to me by Dr. G. D. Mostow.