ON A PROBLEM OF E. ČECH¹

J. NOVÁK

Let \(P \) be an abstract set and let \(\mathfrak{B} \) be the system of subsets of \(P \). An additive, single-valued set-function \(u \) taking \(\mathfrak{B} \) into \(\mathfrak{B} \) and satisfying the conditions \(u(0) = 0 \) and \(u(M) \subseteq M \) for each subset \(M \) of \(P \) is called a topology in \(P \), more precisely, an additive topology² in \(P \). The space \(P \) with the topology \(u \) is denoted by \((P, u)\) or, briefly, \(P \). Instead of \(u(M) \) we shall write simply \(uM \). We define:

\[
\begin{align*}
 u^0M &= M, \\
u^1M &= uM, \\
u^\xi M &= u(u^{\xi - 1}M) \text{ for isolated ordinals } \xi, \\
u^\xi M &= \bigcup_{\alpha < \xi} u^\alpha M \text{ for non-isolated } \xi.
\end{align*}
\]

The set \(M \) is closed if \(M = uM \). \(\phi(M) \) is the least ordinal number \(\xi \) for which the set \(u^\xi M \) is closed, that is, \(u^\xi M = u^{\xi + 1}M \). \(G(P, u) \) is the set of all ordinal numbers \(\phi(M) \) where \(M \subseteq P \).

E. Čech³ has posed the following problem: What are necessary and sufficient conditions on a set \(H \) of ordinals in order that there exist a topology \(u \) in a countable set \(P \) for which \(H = G(P, u) \)? V. Jarník⁴ solved the generalization of the problem for a set of arbitrary cardinal number \(\aleph_0 \); his topology, however, is not an additive one, as it satisfies only the axiom of monotony. The present paper contains a solution to this problem when \(u \) is to be additive; this solution is stated in Theorem 1. The proof is carried through for a class of cardinals including \(\aleph_0 \).

First we have to prove the following lemma.

Lemma. If the space \((P, u)\) contains a non-closed subset, then there exists a non-closed subset \(A \subseteq P \) such that \(uA = u^2A \).

Let \(M \) be a non-closed subset. The set \(uM - M \) is nonvoid: choose \(x \) in \(uM - M \) and let \(A = P - (x) \). By monotony of \(u \), \(A \neq uA = P \), so \(A \)

¹ This paper was rewritten for the Bulletin; the transcriber takes full responsibility for any errors that may have been introduced by this process.
² Every set function \(f \) satisfies the axiom of monotony: if \(M \subseteq N \), then \(f(M) \subseteq f(N) \).
is nonclosed but \(uA \) is closed.\(^6\)

Theorem 1. Let \(H \) be a set of ordinal numbers. There exists an additive topology \(u \) in a countable set \(P \) (different from \(uM = M \) for all \(M \subseteq P \)) for which \(H = G(P, u) \) if and only if: \(^6\)

1°. \(H \) contains only countable ordinals (that is, ordinals of the first and second number classes) including 0 and 1, and

2°. If \(\alpha \) and \(\beta \) are ordinal numbers such that \(\alpha + \beta \in H \), then \(\beta \in H \).

Necessity. Obviously \(0 \in H \); by the lemma, 1 also is in \(H \). Every \(\phi(M) \) is countable since \(P \) can contain no uncountable ascending family of distinct sets.\(^7\) 2° follows from the equality \(u^{\alpha+\beta} M = u^{\alpha+\beta+1} M \), which can be rewritten as \(u^\beta (u^\alpha M) = u^\beta+1 (u^\alpha M) \). (If \(P \) is an arbitrary set of cardinal \(\aleph_p \), the same necessity proof works with 1° changed to allow only ordinals corresponding to cardinals not greater than \(\aleph_p \).)

Sufficiency. This proof will be carried through for cardinals \(\aleph_p \), satisfying the following condition: If \(R \) is a set of cardinal number \(\aleph_p \), there exists a family \(S \) of cardinal number \(\aleph_{p+1} \) whose elements are subsets \(P_\lambda \) of \(R \), \(\lambda < \aleph_{p+1} \), such that each \(P_\lambda \) is of cardinal \(\aleph_p \) while

\[
P_\lambda \cap P_\mu, \quad \lambda \neq \mu, \text{ has cardinal less than } \aleph_p.
\]

Such cardinals do exist; in particular, taking \(R \) to be the set of rational numbers, well-ordering the irrationals, and defining \(P_\lambda \) to be a sequence of rationals converging to the \(\lambda \)-th irrational, shows that \(\aleph_0 \) is such a cardinal. Define \(M \sim 0 \) to mean that the cardinal of \(M < \aleph_p \).

We assume that \(H \) is a set of ordinals satisfying 1°, generalized to allow ordinals less than \(\omega_{p+1} \), and 2°. To topologize a set \(R \) of the given cardinal \(\aleph_p \), assume that \(H \) is well-ordered by magnitude, \(H = \alpha_0, \alpha_1, \ldots, \alpha_\lambda, \ldots \), with \(\alpha_\lambda < \omega_{p+1} \) and \(\lambda < \omega_p, \sigma \leq p+1 \). Then, by 1°, \(\alpha_0 = 0 \) and \(\alpha_1 = 1 \). For each \(\lambda < \omega_p \) and each \(\xi \leq \alpha_p \) let \(P_\xi \) be subsets of \(P_\lambda \) such that

\[
P_\lambda \subset P_\mu \subset \cdots \subset P_\xi \subset \cdots \subset P_\lambda \alpha_\lambda,
\]

\[
P_\gamma \xi \text{ and } P_\lambda \xi + 1 - P_\lambda \xi \text{ are of cardinal number } \aleph_p,
\]

and

\[
P_\lambda \alpha_\lambda = P_\lambda \text{ and } P_\lambda \xi = \bigcup_{\alpha_\lambda \xi < \xi} P_\lambda \xi \text{ for non-isolated } \xi.
\]

\(^6\) By footnote 2, \(u \) is a monotone.

\(^7\) The condition 2° is essentially the same as Jarník's condition 3 in the paper cited under footnote 4.

\(^7\) V. Jarník defines \(\phi(0) = \phi(P) = 1 \); therefore according to Jarník, \(\phi = 1 \in H \).
Set $P_{\lambda-1} = 0$ and assume for convenience that -1 is less than all ordinals.

For each subset M of R and each $\lambda < \omega_\omega$ define the symbol (λM) to be the least index ξ such that $M \cap (P_\lambda - P_{\lambda+1}) \sim 0$. Then $-1 \leq (\lambda M) \leq \alpha_\lambda$, and $(\lambda M) = -1$ if and only if $M \cap P_\lambda \sim 0$. We now prove

\begin{equation}
(\lambda [M \cup N]) = \max [(\lambda M), (\lambda N)].
\end{equation}

Indeed it follows from the definition that $(\lambda A) \leq (\lambda B)$ if $A \subseteq B$. Therefore $(\lambda [M \cup N]) \geq \max [(\lambda M), (\lambda N)]$. Suppose that, on the other hand, $(\lambda M) \leq (\lambda N)$; then the set $(M \cup N) \cap (P_\lambda - P_{\lambda+1}) \sim 0$ so that $(\lambda [M \cup N]) \leq \max [(\lambda M), (\lambda N)]$.

For each $\lambda < \omega_\omega$ define $f_\lambda(\xi) = \xi + 1$ for $0 \leq \xi < \alpha_\lambda$, and $f_\lambda(-1) = -1$, and $f_\lambda(\alpha_\lambda) = \alpha_\lambda$. Say that a subset M of R is of kind α if there exist a finite set of indices, $\lambda_1, \ldots, \lambda_n$, such that $M = \bigcup \{P_\lambda \mid \lambda_1 \leq \lambda \leq \lambda_n\}$; otherwise say that M is of kind β. If F is a set of kind α, put

$$F(M) = \bigcup_{i \leq n} P_{f_\lambda(\lambda_i, M)}$$

where, for brevity, P_{λ_i} and f_λ have been replaced by P_i and f_i. If M is of kind α, define $uM = M \cup F(M)$; if M is of kind β, define $uM = R$.

If M is of kind α, the set $F(M)$ is uniquely defined. Indeed, let $\bigcup_{i \leq n} P_{\lambda_i} \supseteq M \subseteq \bigcup_{i \leq n} P_{\mu_j}$ and take $i \leq n$; then $M \cap P_{\lambda_i} - \bigcup_{i \leq n} P_{\mu_j} \sim 0$. By (1) either λ_i is a μ_j or $(\lambda_i M) = -1$ and $P_{f_\lambda(\lambda_i, M)} = 0$. Hence every contribution to $F(M)$ by a λ_i is supplied by a μ_j, and conversely.

$M \cup N$ is of kind α if and only if both M and N are of kind α. Also for sets of kind α we have $F(M \cup N) = F(M) \cup F(N)$. Indeed, let $\bigcup_{i \leq n} P_{\lambda_i} \supseteq M \cup N \supseteq \bigcup_{i \leq n} P_{\mu_j}$ and take $i \leq n$. By (5) the contribution, $P_{i, f_\lambda(\lambda_i, M \cup N)}$, of the ith term to $F(M \cup N)$ comes either from $F(M)$ or $F(N)$. From this it follows that u is an additive topology.

First, u is uniquely defined for each subset of R and $M \subseteq uM$; also $u0 = 0$ since the void set is of kind α. u is additive for sets of kind α for

$$u(M \cup N) = F(M \cup N) \cup F(N) \cup M \cup N = uM \cup uN.$$

Every set $M \sim 0$ is of kind α and $F(M) = 0$ so $uM = M$ if $M \sim 0$. If either M or N is of kind β, $u[M \cup N] = R = uM \cup uN$.

Since $(\lambda P_{\lambda \xi}) = \xi$, (3) and (4) imply that $uP_{\lambda \xi} = P_{\lambda \xi+1}$ for $0 \leq \xi < \alpha_\lambda$ and $uP_{\lambda \xi} = P_{\lambda \xi}$ for $\xi = \alpha_\lambda$. By transfinite induction the reader can easily verify this from (4) that

\begin{equation}
u^r P_{\lambda \xi} = P_{\lambda \xi+r} \text{ for } \xi + r \leq \alpha_\lambda; \quad u^r P_{\lambda \xi} = P_{\lambda \xi} \text{ for } \xi + r \geq \alpha_\lambda.
\end{equation}

It remains to show that $G(R, u) = H$. By (6) with $\xi = 0$, $\eta = \alpha_\lambda$, it follows that $\phi(P_{\lambda 0}) = \alpha_\lambda$. Hence $H \subseteq G(R, u)$. To establish the opposite
inequality we must prove $\phi(M) \in H$ if $M \subset R$. If $uM = u^2M$, $\phi(M) = 0$ or 1, so it is in H by 1º. If $uM \neq u^2M$, then M is of kind α, for $uM = R = u^4M$ if M is of kind β. We note also that if $uA = uB$ and $uA \neq u^2A$, from the equalities $u^A = u^B$, it follows that $\phi(A) = \phi(B)$. Hence for $M - \bigcup_{i \leq n} P_{\lambda_i} \sim 0$ we have

$$uM = \bigcup_{i \leq n} P_{u^\lambda_i M} \cup K = u\left(\bigcup_{i \leq n} P_{u^\lambda_i M} \cup K \right),$$

where $K \sim 0$. By the remarks above, since $uM \neq u^2M$, we have

$$\phi M = \phi\left(\bigcup_{i \leq n} P_{u^\lambda_i M} \cup K \right).$$

By (6) and additivity of u, $\phi(M) = \max_{i \leq n} \phi(P_{u^\lambda_i M})$ so it suffices to see that every $\phi(P_{\lambda_0})$ is in H. However if $\eta = \phi(P_{\lambda_0})$, then by (6) $\xi + \eta = \phi(P_{\lambda_0}) = \alpha \in H$; by 2º, $\eta \in H$. This completes the proof.

BRNO, CZECHOSLOVAKIA