ON UPPER SEMICONTINUOUS FUNCTIONS

E. J. MICKLE AND T. RADÓ

1. Introduction. In his important paper [1] (see Bibliography) on the theory of the Lebesgue area of surfaces, L. Cesari established the following interesting result. Let X be the unit cube $0 \leq x_j \leq 1$, $j = 1, \ldots, m$, of Euclidean m-space and let Y be the unit cube $0 \leq y_i \leq 1$, $i = 1, \ldots, n$, of Euclidean n-space. Let $F(x_1, \ldots, x_m, y_1, \ldots, y_n)$ be a real-valued, bounded, upper semicontinuous function in the product space $X \times Y$. Then for each point $(x_1, \ldots, x_m) \in X$, F is a bounded, upper semicontinuous function of $(y_1, \ldots, y_n) \in Y$, and hence F attains, for each fixed $(x_1, \ldots, x_m) \in X$, a maximum value $M(x_1, \ldots, x_m)$, while (y_1, \ldots, y_n) varies in Y. According to the theorem of Cesari, there exists then in X Borel measurable functions $y_i = \Phi_i(x_1, \ldots, x_m)$, $i = 1, \ldots, n$, such that identically

$$F[x_1, \ldots, x_m, \Phi_1(x_1, \ldots, x_m), \ldots, \Phi_n(x_1, \ldots, x_m)] = M(x_1, \ldots, x_m).$$

The proof given by Cesari is essentially an induction proof. The purpose of this note is to give a direct proof for a more general result (see our Theorem 3.1) which contains the theorem of Cesari as a very special case. In this generalized result, X is any metric space and Y is any compact metric space. In this general setting, the concept of a real-valued Borel measurable function is replaced by the following concept (cf. Kuratowski [2, p. 177]). A single-valued transformation T from a metric space S_1 into a metric space S_2 is termed a Borel transformation if for every closed set $F_2 \subseteq S_2$ the inverse set $T^{-1}(F_2)$ is a Borel set in S_1 (and, hence, if the inverse of every Borel set in S_2 is a Borel set in S_1).

2. Preliminaries. Throughout this section X will denote a metric space and I will denote the unit interval $0 \leq t \leq 1$. Points in X will be denoted by x.

Lemma 2.1. In the product space $X \times I$ let E be a set which satisfies the following conditions.

(a) For each t_0 the set

$$E \left[(x, t) \in E, \ t = t_0 \right]$$

is a Borel set.

Received by the editors January 10, 1949.

226
(b) For each x_0 the set
\[E \left[(x_0, t) \in E \right] \]
is a closed interval containing 0. Then E is a Borel set.

Proof. Let r_1, r_2, \ldots be the set of rational numbers in I. For each pair of integers n and m we set
\[E_{m}^{n} = \bigcup_{(x, t) \in P, 0 \leq t \leq r_n + 1/m, t \leq 1} (x, t) \in E. \]
It follows from condition (a) that each set E_{m}^{n} is a Borel set. Thus the sets
\[E_{m} = \sum_{n} E_{m}^{n}, \quad m = 1, 2, \ldots, \]
are Borel sets. The reader will verify readily that $E = \prod_{m} E_{m}$. Therefore E is a Borel set.

Lemma 2.2. In the product space $X \times I$ let E be a set which satisfies the following conditions.

(a) For each t_0 the set
\[E \left[(x, t) \in E, t = t_0 \right] \]
is a Borel set.

(b) For each x_0 the set
\[E \left[(x_0, t) \in E \right] \]
is a closed interval containing 1. Then E is a Borel set.

Proof. The proof is similar to that used in Lemma 2.1.

Lemma 2.3. Let $t=f(x)$ be a single-valued transformation from X into I and in the product space $X \times I$ let
\[E_{*} = \bigcup_{(x, t) \in E} [0 \leq t \leq f(x) \] \[E^{*} = \bigcup_{(x, t) \in E} [f(x) \leq t \leq 1]. \]
A necessary and sufficient condition that $t=f(x)$ be a Borel transformation is that E_{*} be a Borel set. The same statement holds with E_{*} replaced by E^{*}.

Proof. Assume that $t=f(x)$ is a Borel transformation. Then E_{*} and E^{*} clearly satisfy the conditions of Lemma 2.1 and Lemma 2.2 respectively. Hence E_{*} and E^{*} are Borel sets.
Assume that E_* is a Borel set. We assert that $f^{-1}(B)$ is a Borel set whenever B is a Borel set in I. By well known results it is sufficient to prove this assertion for the case where

\[(1)\quad B = E_{t} \left[t_0 \leq t \leq 1 \right]. \]

Let B be a Borel set as given in (1). Set

\[X^0 = \left\{ (x, t) \in X \times I, t = t_0 \right\}, \quad B_* = E_* X^0. \]

Let $P: (x, t) \rightarrow x$ be the projection of $X \times I$ onto X. From the definition of E_* and by well known properties of Borel sets we have the following facts concerning the sets B and B_*. (i) $f^{-1}(B) = P(B_*).$ (ii) Since E_* is assumed to be a Borel set, B_* is a Borel subset of $X^0.$ (iii) Since P is a bicontinuous transformation from X^0 onto X and B_* is a Borel subset of X^0, $P(B_*)$ is a Borel set. From (i) and (iii) it follows that $f^{-1}(B)$ is a Borel set.

A similar reasoning applies if E_* is assumed to be a Borel set.

Let $g(x, t)$ be a real-valued, bounded, upper semicontinuous function defined on the product space $X \times C$ where C is a closed subset of I and C contains 0. Set

\[M(x) = \max_{t \in C} g(x, t) \quad \text{for } x \text{ fixed, } t \in C. \]

Since $g(x, t)$ is an upper semicontinuous function and C is compact, the set

\[E(x) = E_{t} \left[g(x, t) = M(x), \quad x \text{ fixed} \right] \]

is a closed subset of C for each x. Set

\[(2)\quad t = f(x) = \min_{\tau \in E(x)} \tau \]

Lemma 2.4. Under the above conditions the transformation $t = f(x)$ defined in (2) is a Borel transformation from X into C and for each $x \in X$

\[(3)\quad g[x, f(x)] = M(x). \]

Proof. The relation (3) follows from the definition of $t = f(x)$ in (2). To prove that $t = f(x)$ is a Borel transformation we set

\[g_1(x, t) = \max_{\tau \in C} g(x, \tau) \quad \text{for } 0 \leq \tau \leq t, \tau \in C. \]

Since 0 is in C, $g_1(x, t)$ is defined on $X \times I$. It is easily shown that $M(x)$ and $g_1(x, t)$ are bounded, upper semicontinuous functions on $X \times I$ and $g_1(x, t) \leq M(x)$. Thus the function

\[\phi(x, t) = M(x) - g(x, t) \geq 0. \]
is a Borel measurable function. Hence the set

\[E_0 = \{ (x, t) : \phi(x, t) = 0 \} \]

is a Borel set. It is easily shown that the set \(E_0 \) is equal to the set

\[E^* = \{ (x, t) : f(x) \leq t \leq 1 \} \]

Therefore, by the result in Lemma 2.3, \(t = f(x) \) is a Borel transformation.

The reader can easily verify the following result on Borel transformations.

Lemma 2.5. Let \(Y \) be a metric space which is the product of \(n \) metric spaces \(Y_1, \ldots, Y_n \) and let

\[T: \Phi_i(x), \quad i = 1, \ldots, n, \quad x \in X, \quad y_i \in Y_i, \]

be a single-valued transformation from \(X \) into \(Y \). A necessary and sufficient condition that \(T \) be a Borel transformation from \(X \) into \(Y \) is that each of the transformations \(y_i = \Phi_i(x) \) be a Borel transformation from \(X \) into \(Y_i \).

3. The main results.

Theorem 3.1. Let \(X \) be a metric space, let \(Y \) be a compact metric space, and let \(F(x, y) \) be a real-valued, bounded, upper semicontinuous function defined on the product space \(X \times Y \). Then there exists a Borel transformation

\[y = \Phi(x) \]

from \(X \) into \(Y \) such that for each \(x \in X \)

\[F[x, \Phi(x)] = M(x), \quad \text{where} \quad M(x) = \max F(x, y) \quad \text{for} \quad x \text{ fixed, } y \in Y. \]

Proof. Since \(Y \) is compact, \(Y \) is the continuous image of a closed subset \(C \) of the unit interval \(I: 0 \leq t \leq 1 \), where \(C \) contains 0 (see Whyburn [3, p. 34]). Let us denote this continuous transformation by

\[\Phi(t), \quad t \in C. \]

Then

\[F[x, \Phi(t)] = M(x), \quad \text{for} \quad x \text{ fixed, } t \in C. \]
The transformation \(t = f(x) \) defined in Lemma 2.4 in terms of \(g(xt) \) is a Borel transformation from \(X \) into \(C \) for which

\[
g[x, f(x)] = M(x).
\]

Set

\[
y = \Phi(x) = \phi[f(x)].
\]

From (6), (7), and (8)

\[
F[x, \Phi(x)] = F[x, \phi(f(x))] = g[x, f(x)] = M(x).
\]

Thus the transformation defined in (8) satisfies the relation (5). Let \(B \) be a Borel set in \(Y \). Then

\[
\Phi^{-1}(B) = f^{-1}[\phi^{-1}(B)].
\]

Since \(y = \phi(t) \) is a continuous transformation from \(C \) onto \(Y \), \(\phi^{-1}(B) \) is a Borel subset of \(C \), and since \(t = f(x) \) is a Borel transformation from \(X \) into \(C \), \(f^{-1}[\phi^{-1}(B)] \) is a Borel set. Thus the transformation defined in (8) is a Borel transformation from \(X \) into \(Y \) which satisfies the conditions of the theorem.

If in the preceding theorem \(Y \) is the product of \(n \) metric spaces \(Y_1, \cdots, Y_n \), the Borel transformation (4) can be written in the form

\[
y_i = \Phi_i(x), \quad x \in X, \quad y_i \in Y_i, \quad i = 1, \cdots, n.
\]

By Lemma 2.5 we thus have the result:

Corollary. Each transformation \(y_i = \Phi_i(x), \; i = 1, \cdots, n \), given in (9) is a Borel transformation from \(X \) into \(Y_i \).

If \(X \) coincides with the unit cube \(0 \leq x_j \leq 1, \; j = 1, \cdots, m \), of Euclidean \(m \)-space and \(Y \) coincides with the unit cube \(0 \leq y_i \leq 1, \; i = 1, \cdots, n \), of Euclidean \(n \)-space, then we obtain as a special case the theorem of Cesari stated in the introduction.

Bibliography

Ohio State University