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A widely used theorem of analysis asserts that a uniformly

bounded, equicontinuous family of functions has a compact closure

in the space of continuous functions. This lemma, variously attrib-

uted to Arzela, Escoli, Montel, Vitali, and so on, is of importance

in the theory of integral equations, conformal mapping, calculus of

variations, and so on. In recent years the lemma has been generalized

by S. B. Myers [l].1 A part of his results may be formulated as fol-

lows;

If a topological space X is either (a) locally compact, (b) satisfies

the first axiom of countability, and if Y is a metric space, then a

family F of continuous functions from X to Y is compact (in a suit-

able topology) if and only if (1) F(x) = (J/^Ff(x) is compact for all

xG.X, (2) Pis closed, (3) Pis equicontinuous.

The main purpose of §1 of this paper is to characterize compact

sets of functions when Y is any regular topological space. The prob-

lem is therefore to find a condition to replace equicontinuity, which

no longer makes sense. We obtain such a characterization which holds

for an easily described class of spaces X which includes both locally

compact and first countable. In §2 these results are applied to obtain

a sort of duality theorem for the ring of real-valued continuous func-

tions, R(X), on a space X. Namely, it is shown that, under quite

general conditions, the space X is homeomorphic with the space H(X)

of continuous homomorphisms from the ring R(X) onto the real

numbers, where R(X) and H(X) are given the "compact-open" topol-

ogy.

1. Compact sets of functions. All spaces to be considered in what

follows will be assumed Hausdorff.

We introduce now the notation of a fe-space first defined by Hure-

wicz.

Definition. A topological space X is called a &-space if SQX is

closed if and only if 5 intersects every compact subset of X in a com-

pact subset.

The ^-spaces are an important class in that they are exactly the

spaces whose topology is determined once the compact subsets are
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known. Let us verify that fe-spaces include both locally compact

spaces and spaces satisfying the first axiom of countability.

Let X be locally compact and suppose S(ZX intersects every com-

pact set in a compact set. We must show that S is closed, so suppose

x€£•!>. Let TV be a neighborhood of x with compact closure N. Then by

assumption NC\S is compact and does not contain x, so there is a

neighborhood N' of x such that N'C\(Nr\S) =0. Letting N" = N'

C\N, we get N''(^S = N'r\Nr\S<ZN'r\Nr\S = 0, so 5 is closed.
Let X be first countable, and suppose SdX intersects every com-

pact set in a compact set. If x is in the closure of S, then it is a limit

point of a sequence (x<) of points in 5, and the set K consisting of the

sequence (x<) and the point x is compact. By assumption Kr\S is

compact hence closed, so since each point of (x.) lies in KC\S, it

follows that xEXT^S and hence xES and 5 is closed.

We shall now redefine briefly the notions of compact-open (c.o.)

and point-open (p.o.) topologies for function spaces.

Definition. If X and F are spaces and KQX is compact and U is

open in Y, we denote by [K, U] the set of all continuous functions

from X to F such that f(K) C U. We denote by Yx the space of all

continuous functions from J to Y in which the sets [K, U] form a

subbase (the compact-open topology).

If xE-X" and U is open in F, we denote by | x, U\ the set of all func-

tions (not necessarily continuous) from X to Fsuch that/(x) E U and

we denote by Fx| the space of all functions from X to F in which

the sets |x, U form a subbase (point-open topology).

Some further notation will be needed.

If FC Yx and SCX and TC Y we define,

F(S) = U f(S),     UF-i(T)= U tl(T),     C\F-1(T)= fl t\T).
/Gf /Elf /Gf

Theorem 1. If X is a k-space and Y is regular, then a set of functions

Fd Yx is compact if and only if;
(1) F is closed in Yx;

(2) F(x) is compact for every xC.X;

(3) If Q is closed in F and C is closed in Y, then UQ~1(C) is closed
in X.

The condition (3) can be stated in the clearly equivalent form.

(3') If Qis closed inFand Uis open in Y then CiQ^iU) is open in X'.

(This condition represents a sort of simultaneous continuity of the

functions Q, requiring that the inverse image of an open set be open

in this generalized sense.)

Proof. We first show the necessity of (1), (2), and (3). If F is
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compact, then (1) is satisfied since Yx is Hausdorff [2]. To prove

(2), define for each x£X, <px from Yx to Y by <px(J)=f{x). Then<p* is

continuous, for if U is open in Y and d>x(f) £ U, we let N(f) = [x, U\.

N(J) is open by definition of the topology in Yx, and clearly <px(N(x))

C U. Therefore <j>x is continuous and hence if F is compact, so is

<bx(F) = F(x).

Condition (3) is the one which replaces equicontinuity and is less

trivial to prove. We observe first that if Q is closed in F, then it is

compact, so it suffices to demonstrate (3) for compact sets of func-

tions, hence for F itself.

Let C be closed in Fand set B=\JF~1(C). To show that E is closed,

we must show that for any compact set K, KC\E = S is compact or,

what is equivalent, closed. We shall show that if xo(£S, then xo^fS.

There are two cases.

Case 1, xo&K. Then there is obviously a neighborhood of x0 which

does not intersect K, hence does not intersect S, so xoES.

Case 2, xodK. Then since x0(£S, we have xo(£E, so/(x0) is in the

complement of C = U for all/SEP. Since F is regular we can chose

for each /£// a neighborhood Nf of x0 such that f(Nf) C U. Now de-

fine Kj — 'NfC^K. This is a compact set. Finally we define for each

/Gf, Wf= [Kf, U]. These sets are open and cover F, so by compact-

ness we can find functions fi, • • • ,fn such that the corresponding

Wfi cover F. Thus for every /£ F there is an i such that f{Kf^) C U,

and therefore if K* = V\iKfi, we have f(K*)CU for all /Gp so
K*C\E = 0. Now let A^* = niiV/i. We show that N*C\S is empty, for

N*r\SCN*r\KCK*, so (N*r\S)r^E = 0, and since SC£, /V*nS
= 0. Therefore 5 is closed and hence compact as it lies in K, so since

X is a /fe-space we conclude that E is closed.

The proof of sufficiency is quite similar to the proof given by Myers

for the equicontinuous case. A preliminary result is needed.

Lemma. If a family F in Yx satisfies condition (3) of the theorem,

then the compact-open and point-open topologies are equivalent on F.

Proof. It is clear that every open set in | Yx\ is also open in Yx,

giving continuity in one direction. It remains to show that the sets

[K, U]r\F are also open in the point-open topology. Let/(EF map

K compact into U open in F. Then for each x£if, choose Vx open

so that/(x) G VXQ Vxd U, which is possible since F is regular. Since

f(K) is compact, we choose xi, • • • , x„ such that UiVXiZ)f(K) and

let V=\JtVXi. Then f(K)CVCVCU.
Now for each xEK, define Wx= {/'|/'GP and /'(*)G V}. W, is

closed and nonempty, containing /. Therefore it follows from con-
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dition (3') that C\WX-1(U) is an open neighborhood of x, denoted by

Nx. The neighborhoods Nx cover K and hence we can find x{, ■ ■ ■ ,

xU in K such that fUV*{ DK.
Now fefti\*/,, 7|. We shall show fl(| */, V\ C [AT, £/], for suppose

/'(x,') G F for all i. Then for any xGAT there is an i such that xG^,

hence xGHW^t/) and therefore g(x)Gt/ for all gGF such that

g(x,)GF. But since/'(*,•) GF, it follows that/'(*) G £7, hence /'(AT)
C £7, completing the proof.

We now obtain the sufficiency of the conditions of Theorem 1

without requiring that X be a &-space. Let F(ZYX satisfy (1), (2),

and (3). Since F satisfies (3), it may be considered as imbedded

topologically in | Yx\ by the lemma, and we shall denote its image by

F'. Now I Yx\ can be considered as the topological product of Y

with itself X times, and since F(x) is compact for each x, we get

Q= IX*ex F(x) is compact, and since F'C(?C| Yx\, it suffices to

prove that F' is closed in | Yx\.

Suppose then g'GF'- The theorem will be proved if we can show g'

continuous, for the set F\Jg in Yx will also satisfy condition (3) and

will be homeomorphic to F'\Jg' so that gGF- But since F is closed in

Yx, we have gGF or g'GF', so F' is closed, hence compact.

We show g' is continuous. Let xo be in X and g(xo) in U open in Y.

Choose V open in Y such that g(x0) G VCVC U and let T= {f\fEF
and /(xo)GfAj- T is closed in F and nonempty, since g'G(? so that

g'(xo)G-F(xo), and hence for some/oGF we have /o(xo) =g'(x0)G V.

Hence by condition (3), nj'_1(T/) = ^(xo) is open in X. We shall show

that g'(N(xo))C.U. Let xG-A^xo) and let W be any neighborhood of

g(x) in F. Since gGF', there exists /'GF such that /'G|xo, F|

n|x, W\. But/'G|x0, V\ implies /' G T, and hence /'(x) G F since

xGAr(xo). Hence WC\Vj£0 for any fF3g(x), which means g(x)G^

and therefore g(x) G £7 and g is continuous.

Remark. Condition (3) of Theorem 1 is not equivalent to equi-

continuity when F is metric. In fact one easily constructs an equi-

continuous family from the unit interval to the reals which does not

satisfy (3).

We now derive a simple consequence of Theorem L

Theorem 2. Let Fbea family of continuous functions from a k-space

X into Y regular. Define cp:X—*YF by <j>(x)(f) =/(x). Then </> is con-

tinuous.

Proof. Let xo be in X and let [K, U] be a subbasic neighborhood of

tp(xo) in YF, with K compact in F, U open in F. This means if(xo) C U
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or <p(xo)eUAT-1(t/)- But by Theorem 1, N(x0) =ftK-l(U) is open in

X and, since <p(A7(xo)) C [K, U], <j> is continuous.

2. Application to function rings. Let 72 denote the real numbers,

X a topological space, and R(x) the ring of all continuous functions

from X into R in the compact-open topology. A sub-algebra A (X)

CR(X) will be called separating over X if for x^x'G-X", there

exists f£-A(X) such that /(x) =0, f(x') 9*0.
We define H to be the set of all continuous homomorphisms from

A (X) onto R and we define the natural mapping, <f>, from X into H as

follows: <p(x)(/) =/(x) for all fdA(X). To justify this definition one

must show that <p(x) is actually a continuous homomorphism of

A (X) onto R, which fact, however, is immediately verified.

Lemma. If A (X) is separating, then <p is one-to-one and onto.

Proof. The one-to-one property follows from the fact that A is

separating. Namely <p(x) =<p(x') implies <p(x)(/) =4>(x')(J) for all

f(ELA(X), or /(x) =/(x') and hence x = x'.
To show that <j> maps onto H, let h be a continuous homomorphism

from A (X) onto R and let M be the closed maximal ideal which is its

kernel. We shall show that there exists xoGXsuch that /(xo) =0 for all

/£ M, for suppose this is false. Then M is again a separating algebra

on X, for given xj^x'CX choose /£M such that /(x')^0, and

gGA(X) such that g(x)=0, g(x')^0. Then if k=fgE.M we have
k(x)=0, k(x')5*0. Now since M is separating, we can apply the

Stone-Weierstrass approximation theorem [3] which states that a

separating algebra of continuous functions is dense in R(x) in the c.o.

topology. But since M is closed, this would mean M =A(x), contrary

to the fact that h maps onto R. The contradiction shows that every

function in M vanishes on some point xo£X. Since M is maximal, it

follows that M consists of a\lfCA(X) such that/(xo) =0. Thus h has

the same kernel as the homomorphism <p(xo), which means they differ

by an automorphism of R, and since the only such automorphism is

the identity we conclude that &=<p(xo).

The above shows that X and H are in a natural one-to-one cor-

respondence. The question then occurs as to whether one can make <p

into a homeomorphism by giving H a function space topology. We

consider the case where the algebra A(X) is completely regular,

which means, for any C closed in X and x££C, there exists fCA(X)

such that /(x) (£/(C). For this case it is known and easily verified

that 4> is a homeomorphism when H is given the p.o. topology. First,
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<b is continuous for if [/, U\ is subbasic in H, then ll\)

=0-1{ä|ä(/)GC/} = {x\f(x)E.U} =f~1(U), which is open since / is
continuous. Also <p_1 is continuous, for let C be closed in X and sup-

pose h($:<p(C). If x = <p~1(h), then by complete regularity there exists

/£i4 (X) such that/(x) ££/(c) and if we let U be the complement of

/(c) it follows that |/, U\ is a subbasic neighborhood of h which does

not intersect <j>(C), so 0(c) is closed.

As an application of the results of §1 we prove:

Theorem 3. If X is a k-space and A (X) is completely regular, then if

H is given the c.o. topology, <p is a homeomorphism.

Proof. The continuity of <p is precisely the statement of Theorem

2. The fact that <p~l is continuous is seen since we have observed that

0_1 was continuous in the p.o. topology and a fortiori continuous in

the stronger c.o. topology.

We remark that the above theorem shows that p.o. and c.o. topol-

ogy are equivalent on H.
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