Thus, with respect to the coordinate system \(w(\xi) \), the product function of \(G \) is of class \(C^* \) and hence \(G \) is a local Lie group.

Proof of the Theorem. When \(G \) has the discrete center, Lemma 5 shows that \(G \) is a local Lie group.

When \(G \) has the non-discrete center \(N \), by Lemma 4, \(N \) is an abelian Lie group, and by Lemma 5 again, \(G/N \) is a local Lie group. Then we can introduce a canonical coordinate of the second kind by \(x_1^{\lambda_1} \cdots x_m^{\lambda_m} \), where \(x_i^{\lambda_i} (i = 1, 2, \cdots, m) \) are one-parameter subgroups of \(G/N \). Take \(x_i \) of \(G \) from the coset \(x_i^{\lambda_i} \) for each \(i \), we can easily show that the set \(M = \{ y; y = x_1^{\lambda_1} \cdots x_m^{\lambda_m}, |\lambda_i| \leq 1 \} \) satisfies the condition (3) of Lemma 6. Consequently, by Lemma 6, \(G \) is a local Lie group. This completes our proof.

References

Tokyo Institute of Technology

NOTE ON A THEOREM OF KOKSMA

WM. J. LEVEQUE

In 1935 Koksma [2] showed, among other things, that the sequence \(x, x^2, x^3, \cdots \) is uniformly distributed (mod 1) for almost all \(x > 1 \); that is, that if \(N(n, \alpha, \beta, x) \) denotes the number of elements \(x^i \) of the sequence \(x, x^2, \cdots, x^n \) for which

\[
0 \leq \alpha \leq x^i - [x^i] < \beta \leq 1,
\]

then

\[
\lim_{n \to \infty} \frac{N(n, \alpha, \beta, x)}{n} = \beta - \alpha
\]

Presented to the Society, September 10, 1948, under the title *A metric theorem on uniform distribution* (mod 1); received by the editors January 24, 1949 and, in revised form, February 10, 1949.

1 The author is indebted to Professor Mark Kac for his help in connection with this paper.

* Numbers in brackets refer to the bibliography at the end of the paper.
for almost all $x>1$. The purpose of this note is to provide another proof of this theorem, based on a lemma used in a recent paper [1] of Kac, Salem, and Zygmund on quasi-orthogonal functions. The assertion is contained in the more general theorem:

Theorem 1. Let $g(x, n)$ be any function of the real variable x and the positive integral variable n with the following properties in the interval $a<x<b$:

(i) $dg/dx, d^2g/dx^2$ exist,

(ii) $g'(x, j) - g'(x, k)$ is monotonic, and is different from zero for $j \neq k$,

(iii) for $x = a$ and $x = b$, the inequality

$$|g'(x, j) - g'(x, k)| \leq C |j - k|^\epsilon$$

is fulfilled for some $C > 0$, $0 < \epsilon \leq 1$.

Then the sequence $g(x, 1), g(x, 2), \cdots$ is uniformly distributed (mod 1) for almost all $x \in (a, b)$.

This theorem is weaker than Theorem 3 of Koksma's paper, but it is easily verified that the conditions of the theorem are satisfied for

$$g(x, n) = x^n, \quad 1 \leq a < b,$$

$$g(x, n) = n^tx, \quad \text{every } a, b \quad (t \text{ a positive integer}),$$

$$g(x, n) = n^x, \quad 1 \leq a < b,$$

$$g(x, n) = x^{M(n)}, \quad 1 \leq a < b,$$

where $M(n)$ is positive and such that $|M(j) - M(k)| \geq N$ for some $N > 0$ and all $j \neq k$. This last case is Theorem 2 of Koksma's paper.

We use the following specialization of Lemma 1 of [1]: Let $g(x, n)$ $(n = 1, 2, \cdots)$ be any sequence of real continuous functions in (a, b), and let m be an integer different from zero. Suppose that for all positive integers j, k with $j \neq k$, we have

$$\left| \int_a^b e^{2\pi i g(x, j) - g(x, k)} dx \right| \leq \frac{C_1}{|j - k|^\epsilon},$$

for some ϵ with $0 < \epsilon \leq 1$. Then the series

$$\sum_{n=1}^{\infty} \frac{e^{2\pi i g(x, n)}}{n^{1-\delta}}$$

converges almost everywhere in (a, b) for every $\delta < \epsilon/2$.

(Lemma 1 of [1] is stated for real-valued functions; in the case of complex-valued functions the integrand should be replaced by $f_i(x)\overline{f_k(x)}$, where \overline{f} is the complex conjugate of f.)
We shall show that for a function g satisfying (i), (ii), and (iii) of the theorem, the conditions of the lemma are also satisfied for each m. The validity of the theorem then follows from Weyl's criterion [3, p. 91] for uniform distribution (mod 1) upon noting that the convergence of $\sum a_n/n$ implies that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} a_n = 0.$$

Assume (i), (ii), and (iii). Then

$$\left| \int_{a}^{b} \exp \left\{ 2\pi im(g(x, j) - g(x, k)) \right\} dx \right|$$

$$= \left| \int_{a}^{b} \exp \left\{ 2\pi im(g(x, j) - g(x, k)) \right\} \cdot \frac{g'(x, j) - g'(x, k)}{g'(x, j) - g'(x, k)} \ dx \right|$$

$$\leq \frac{1}{2\pi} \left| \frac{1}{m} \left[\exp \left\{ 2\pi im(g(x, j) - g(x, k)) \right\} \right]_{a}^{b} \right|$$

$$+ \left| \int_{a}^{b} \exp \left\{ 2\pi im(g(x, j)
ight.$$

$$\left. - g(x, k)) \right\} \frac{d}{dx} (g'(x, j) - g'(x, k))^{-1} dx \right|$$

$$\leq \frac{1}{2\pi} \left| \frac{1}{m} \left[\frac{1}{|g'(a, j) - (g'(a, k)|} + \frac{1}{|g'(b, j) - g'(b, k)|} \right.$$

$$\left. + \int_{a}^{b} \frac{d}{dx} (g'(x, j) - g'(x, k))^{-1} dx \right| \right.$$

By (ii), this is

$$\leq \frac{1}{2\pi} \left| \frac{1}{m} \left[\frac{1}{|g'(a, j) - (g'(a, k)|} + \frac{1}{|g'(b, j) - g'(b, k)|} \right.$$

$$\left. + \int_{a}^{b} \frac{d}{dx} (g'(x, j) - g'(x, k))^{-1} dx \right| \right.$$

$$\leq \frac{1}{\pi} \left| \frac{1}{m} \left[\frac{1}{|g'(a, j) - (g'(a, k)|} + \frac{1}{|g'(b, j) - g'(b, k)|} \right.$$

and this, by (iii), is

$$\leq \frac{2}{C\pi |m| \cdot |j - k|},$$
so that the assumptions of the lemma hold with $C_1 = 2/C \pi \vert m \vert$.

Actually, we have proved considerably more than is stated in Theorem 1, at least for the special functions $g(x, n)$ cited above. In each of these cases, the hypothesis of Theorem 1 holds with $\epsilon = 1$. It follows that for every integer $m \neq 0$, the series

$$\sum_{n=1}^\infty \frac{\epsilon^{2 \pi i m g(x, n)}}{n^{1/2+\theta}}, \quad \theta > 0,$$

converges for almost all $x \in (a, b)$. Using Abel's partial summation formula we deduce the following theorem.

Theorem 2. Under the assumptions of Theorem 1,

$$\sum_{n=1}^N \epsilon^{2 \pi i m g(x, n)} = o(N^{1/2+\theta}), \quad \theta > 0,$$

for every integer $m \neq 0$ and for almost all $x \in (a, b)$.

This is a much stronger statement than an assertion about uniform distribution. In view of its generality it is remarkably close to best possible, since it is known [4] that for $g(x, n) = xn^2$, this sum is not $o(N^{1/2})$ for any irrational x.

Bibliography

3. ———, *Diophantische Approximationen*, Ergebnisse der Mathematik vol. 4, no. 4, 1936.

Harvard University