TRANSITIVE SYSTEMS OF LINEAR OPERATORS
ON A BANACH SPACE

BERTRAM YOOD

Let \mathcal{X} be an infinite-dimensional Banach space. Mackey has shown, under more general conditions, that if $x_1, \ldots, x_n, y_1, \ldots, y_n$ are any two sets of n linearly independent elements in \mathcal{X}, then there exists an isomorphism T of \mathcal{X} with itself such that $T(x_i) = y_i$, $i = 1, \ldots, n$. In other words the collection of isomorphisms is transitive for linearly independent sets of elements of \mathcal{X}. This property is shared by many other sets of linear operators, for example by the set of all operators with finite-dimensional range in \mathcal{X}. These two sets of linear operators are semi-groups. In this note we give a condition for the transitivity property above which is necessary for all sets of linear operators and which while not in general sufficient is so for semi-groups. In this result the operators need not be assumed to be bounded or defined everywhere in \mathcal{X}. $\mathcal{C}(\mathcal{X})$ will be used to designate the collection of all bounded linear operators with domain \mathcal{X} and range in \mathcal{X}.

Theorem 1. Let \mathcal{G} be a collection of linear operators with domain and range in an infinite-dimensional Banach space \mathcal{X}. For \mathcal{G} to be transitive for linearly independent sets of elements of \mathcal{X} it is necessary that for each finite-dimensional subspace F of \mathcal{X} there exists a $T \in \mathcal{G}$ which is the identity on F and a number $\epsilon > 0$ such that if $U \in \mathcal{C}(\mathcal{X})$ takes F into F and $\|U\| < \epsilon$, then there exists an operator $V \in \mathcal{G}$ which agrees with $T + U$ on F. If \mathcal{G} is a semi-group, this condition is sufficient.

It is readily seen that the condition is necessary. That it is not sufficient in general can be seen by taking \mathcal{G} to be an ϵ-neighborhood of the identity in the Banach space $\mathcal{C}(\mathcal{X})$.

Let \mathcal{G} be a semi-group. Let F be a finite-dimensional subspace of \mathcal{X} and T_0 be its associated operator in \mathcal{G}, and let x_1, \ldots, x_n be linearly independent elements of F. There exist $x_i^* \in \mathcal{X}^*$ (the conjugate space of \mathcal{X}) such that $x_i^*(x_j) = \delta_{ij}$, $i, j = 1, \ldots, n$. For elements

Received by the editors December 28, 1948 and, in revised form, June 13, 1949.

1 This paper is based on a portion of the author's dissertation, Yale University, 1947. The author wishes to thank the referee for his suggestions which made possible an appreciable shortening of proof of Theorem 1 and clarified the nature of that proof.

3 By a semi-group of linear operators is meant a collection which contains TU whenever it contains T and U.

509
\(v_i \in F \) for which \(\|v_i - x_i\| < \delta = \min \{1, \epsilon\} / 2n \max \|x_i^*\| \), let the transformation \(W \) be determined by

\[
W(x) = \sum_{i=1}^{n} x_i^*(x)(v_i - x_i).
\]

Then \(\|W\| < \min \{1, \epsilon\} / 2 \). Thus \(T_0 + W \) is an isomorphism on \(F \). The operator \(U = \sum_{i=1}^{n} (-1)^i W_i \) has the properties \(\|U\| < \epsilon \) and \((T_0 + U)(T_0 + W)x = x \) for all \(x \) in \(F \). By hypothesis there exist transformations \(U_i \) and \(W_i \) in \(\mathcal{G} \) which agree with \(T_0 + U \) and \(T_0 + W \) respectively in \(F \). Then by the above \(W_i(x_i) = v_i \) and \(U_i(v_i) = x_i \), \(i = 1, \ldots, n \). If also for each \(i \), \(\|v_i - x_i\| < \delta \), \(v_i \in F \), we may define \(W_i' \in \mathcal{G} \) as above so that \(W_i'(x_i) = v_i' \). Then \(W_i' U_i(v_i) = v_i' \), \(i = 1, \ldots, n \). The semi-group property of \(\mathcal{G} \) shows that (a) for each \(F \) and \(x_1, \ldots, x_n \) linearly independent in \(F \) there exists a \(\delta > 0 \) such that for every \(v_i, w_i \) in \(F \) with \(\|v_i - x_i\| < \delta \) and \(\|w_i - x_i\| < \delta \), there exists \(V \) in \(\mathcal{G} \) with \(V(v_i) = w_i, i = 1, \ldots, n \).

Next for a fixed \(F \) and \(n \leq \dim F \) consider the Cartesian product space \(\overline{F} = F \times \cdots \times F \) (\(n \) factors) made up of elements of the form \(\bar{x} = (x_1, \ldots, x_n) \) with \(\|\bar{x}\| = \max_{i=1}^{n} \|x_i\| \). \(\overline{F} \) is a finite-dimensional Banach space.\(^4\) Let \(\overline{L} \) be the set of all \(\bar{x} \in \overline{F} \) such that \(x_1, \ldots, x_n \) are linearly independent in \(F \). By (a), \(\overline{L} \) is open in \(\overline{F} \) and to each point \(\bar{x} \) of \(\overline{L} \) there exists a \(\delta > 0 \) such that \(\|\bar{x} - \bar{v}\| < \delta \) and \(\|\bar{x} - \bar{w}\| < \delta \) imply the existence of a transformation \(V \in \mathcal{G} \) such that \(\overline{V}(\bar{v}) = \bar{w} \) where \(\overline{V}(\bar{v}) = (V(v_1), \ldots, V(v_n)) \). Let \(\overline{K} \) be the set of \(\bar{y} \) in \(\overline{L} \) which can be reached from \(\bar{x} \) along a finite chain of such spheres each overlapping its predecessor. Then by (a) for such a \(\bar{y} \) there exists a sequence \(V_1, \ldots, V_r \) in \(\mathcal{G} \) such that for the product \(W = V_r \cdots V_1, \overline{W}(\bar{x}) = \bar{y} \) and by the semi-group property, \(W \in \mathcal{G} \).

From this it follows by a standard topological argument, used in connection with analytic continuation and elsewhere,\(^5\) that the set \(\overline{K} \) is open and closed in \(\overline{L} \). Therefore (b) if \(\bar{x} \) and \(\bar{y} \) are in the same component of \(\overline{L} \), there is a \(V \in \mathcal{G} \) such that \(\overline{V}(\bar{x}) = \bar{y} \).

Call \(\bar{x} \) and \(\bar{y} \) fully independent if \(x_1, \ldots, x_n, y_1, \ldots, y_n \) form a linearly independent set of \(2n \) elements and suppose that \(\bar{x}, \bar{y} \in \overline{L} \). For such a pair \(\bar{x} \) and \(\bar{y} \), and for any real \(\alpha \), we have \(\alpha \bar{x} + (1 - \alpha) \bar{y} \in \overline{L} \), for \(\sum_{i=1}^{n} \beta_i \alpha x_i + (1 - \alpha) y_i = 0 \) implies \(\beta_i = 0 \), \(i = 1, \ldots, n \). Thus the line segment joining \(\bar{x} \) and \(\bar{y} \) is in \(\overline{L} \). Therefore (c) if \(\bar{x} \) and \(\bar{y} \) are fully independent in \(\overline{L} \), they must belong to the same component of \(\overline{L} \).

\(^4\) S. Banach, Théorie des opérations linéaires, Warsaw, 1932, see p. 182.
\(^5\) The use of the set \(\overline{K} \) and of this argument was suggested by the referee to replace a more lengthy Heine-Borel argument.
If \tilde{x} and \tilde{y} are two linearly independent sets of n elements in X which are not fully independent, consider a set \tilde{v} of n elements which is fully independent of \tilde{x} and also of \tilde{y}. Such a set \tilde{v} exists because \mathcal{X} is assumed to be infinite-dimensional. The subspace F can be taken to contain all the vectors $x_i, y_i,$ and v_i. For the L which corresponds to this F, \tilde{x}, \tilde{y}, and \tilde{v} must lie in the same component by (c). Then by (b) there exists a $U \in \mathcal{G}$ with $U(\tilde{x}) = \tilde{y}$. This completes the proof.

Next we consider all our transformations as being in the space $\mathcal{E}(\mathcal{X})$. For $\mathcal{E}(\mathcal{X})$ the strong topology is defined, following the ideas of von Neumann, as that where the neighborhoods of a transformation U_0 are those of the form

$$N(U_0; x_1, \cdots, x_k, \epsilon) = \{ T \in \mathcal{E}(\mathcal{X}) \mid \| T(x_i) - U_0(x_i) \| < \epsilon, i = 1, \cdots, k \}$$

where $\epsilon > 0$ and $x_i \in \mathcal{X}, i = 1, \cdots, k$.

Theorem 2. A subset \mathcal{A} of $\mathcal{E}(\mathcal{X})$ satisfying the conclusion of Theorem 1 is dense in the strong topology of $\mathcal{E}(\mathcal{X})$.

It suffices to show that the neighborhood $N(U_0; x_1, \cdots, x_k, \epsilon)$ contains an operator in \mathcal{A}. By renumbering, if necessary, we let x_1, \cdots, x_r be a linearly independent subset of the x's which generates the same linear manifold as is generated by all of them. We put $x_i = \sum_{j=1}^r a_{ij}x_j, i = r+1, \cdots, k$ and $A = \max |a_{ij}|$ for these values of i and for $j = 1, \cdots, r$. Also we set $\eta = \min \{ \epsilon, \epsilon/(rA) \}$. We choose w_1, \cdots, w_r in \mathcal{X} where each w_i is linearly independent of the elements $U_0(x_i), i = 1, \cdots, r,$ and of the previously selected w's and each $\| w_i \| < \eta$. The collection $\{ U_0(x_i) + w_i \}$ is a linearly independent set. By the assumption on \mathcal{A}, there exists $T \in \mathcal{A}$ such that $T(x_i) = U_0(x_i) + w_i, i = 1, \cdots, r$. Thus for these values of i, $\| T(x_i) - U_0(x_i) \| < \epsilon$. For $i = r+1, \cdots, k$ we have

$$\| T(x_i) - U_0(x_i) \| = \| (T - U_0) \left(\sum_{j=1}^r a_{ij}x_j \right) \| \leq \sum_{j=1}^r |a_{ij}| \| T(x_j) - U_0(x_j) \| < \epsilon.$$

Then $T \in N(U_0; x_1, \cdots, x_k; \epsilon)$.

Cornell University
