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Introduction. Relations between the multiplication ring of a ring

(= non-associative ring)1 and the ring itself have been pointed out

by a number of writers [l-7]. In the present note it is shown that

the ideal lattice of a ring with unit element is isomorphic to the sub-

lattice of all right ideals of the multiplication ring which contain

the annihilator of the unit. A corresponding result is obtained for the

right ideal lattice. These results generalize some conditions of R. D.

Schäfer [7] which describe the simplicity or right simplicity of an

algebra with unit element in terms of the right ideal structure of the

multiplication ring. We do not quite assume the existence of a unit.

(See the paragraph preceding Lemma 2.) By adjoining a unit ele-

ment, we are able to derive similar, but not quite so precise, results

for arbitrary rings.

We also give considerably simplified proofs of the results2 of Schäfer

[7] which concern the automorphisms of rings with unit. Here our

simplification consists in avoiding the so-called "reconstruction" of a

ring with unit from its multiplication ring. Again we do not quite

require a unit.

1. Ideals in rings. Consider a ring A. Let Mr(Mi) denote the

set of all right (left) multiplications Ra: xRa = xa (La: xLa = ax) of A.

Let ikfr*=[p] (M=[fi]) denote the ring generated by MT (by

MrVJMi). Let Nr=[vr] (N=[v]) be the right ideal of M* (of M)

which is generated by the set of elements of Afr* of the form p=Rxv

— RXRV (of M of  the forms p.=Rxy — RzRy, p = Lxv — LyLx, and p.

— Rx—Lx), where x and y are arbitrary elements of A.

Lemma 1. If aEA, pEMr*, and nEM, then (1) RaP—Ra<>ENr

and (2) Rafi-R^EN.

Proof. The relations (1) and (2) are additive in p and in fj, and we

Received by the editors November 23, 1949.

1 Following a suggestion of an editor and a referee, we shall use hereafter in this

note the terms ring and algebra in place of non-associative ring and non-associative

algebra. The term naring of [8] will not be used here. Numbers in brackets refer to the

references at the end of the paper.

2 Schäfer stated these results for algebras of finite order over a base field, but his

arguments do not essentially use finite dimensionality except on p. 582, line 13, and

in the proof of his Theorem 6.
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may assume that p and p. are products of finitely many elements of

MT and of Mr^JMi, respectively. We then prove (1) and (2) by in-

duction on the number of factors of p and of ¡i. If p—Rx, then (1)

holds by the definition of Nr. To complete the induction, write p

= WRy,   RaP — Rap — RaWRy — R„WRV — RawRy — R(.aW)y + iRaW'— Raw)Ry
ENT. If ß=Lx, we obtain (2) by the following computation: RaLx

—RaLx = LaLx — Lxa+ iRa—La)Lx— iRaLx—LaLx) EN. To complete the

induction, it suffices to note that if p, = WLy, then Raß — Raf> = RaWLv

~ RaWLy = RawLy — Ly(aW) + iRaW — Raw) Ly = LawLy — Ly(aW) + iRaW

-LaW)Ly+iRaW-Raw)LyEN.

Remark. We now see that if A has a unit element 1, then Nr (iV)

consists of all p (p,) such that lp = 0 (lp = 0). For clearly lp = 0

(lju = 0) if pENT ip,EN). Conversely, Lemma 1 with a = 1 shows that

pENT ipEN) if lp = 0 (l/t = 0). Even if A has no unit element, it is

easy to see that cEA is in the center of A if and only if cv = 0 for

every vEN (cf. [7, Theorem 8]).

We shall say that A satisfies condition Uj (U) in case Rx — 0 implies

that x = 0 and MrC\Nr = 0 iMri\N = 0). We shall see that the condi-

tion U¡ (U) will replace the assumption of the existence of a left

unit element (unit element) in our discussion. That the condition

U (U¡) is actually weaker than the outright assumption of a unit

element (left unit element) may be seen by considering a Boolean

ring which has no unit.

Remark. Nakayama [5 ] has also indicated a weakening of the re-

quirement that A have a unit. He requires merely that every finite

subset of A has a left unit in A and also a right unit in A. This con-

dition implies our condition Uj, as is easily seen, but to obtain the

condition U we seem to require that each finite subset of A has a

unit in A.

Lemma 2. If pEM? (jxEM), then there are elements aEA, vrENr

iaEA, vEN) such that p=Ra+vr (ji = Ra+v). These elements are

unique if A satisfies the conditon U¡ (U).

Proof. Again additivity permits us to assume that p (p.) is a product

of finitely many elements of Mr (of M¿JM¡). But then p=Ra or

p=Rapi. In the latter case we have p=Ran+vT by Lemma 1. To

complete the proof, we must consider p,=La=Ra+iLa — Ra) =Ra+v,

and ß=Laßi=Rani+iLa—Ra)ßi = Raiil+i>', by Lemma 1. The unique-

ness under the stated conditions is obvious.

Theorem 1. Let A be a ring which satisfies condition U. Then the

mapping /—>/*= [Po+p; clEI, vEN]  is a lattice isomorphism be-
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tween the ideal lattice of A and the lattice of all right ideals of M which

contain N.

Proof. Clearly 7* contains N. To see that I* is a right ideal of M,

note first that if a, bEL v, v'EN, then (Ra+v) - (Rb+v') =i?„_»

+ (v—v')EI*. If pEM, we use Lemmas 1 and 2 to compute (Ra+i>)fj.

= (Ra + v) (Rx + vi) = Rax + RaRx - Rax + Ran + Ravi - Rari + vRx + Wl

= Rax+m1-\-v2EI*. Thus 7* is a right ideal of M. Now let 3 be an

arbitrary right ideal of M which contains N. Define 1= [a; RaE3]-

Then we verify that I is an ideal of A as follows. Let a, bEI, xEA.

Then i?a_¡, = i?a — RbE3, Rax = RaR*+RaX — RaRxE3, since 3 contains

N, and Rxa=Lxa-\-Rxa — Lxa = RaLx+(La — Ra)Lx-\-Lxa—LaLx+Rxa

— LxaE3, since 3 contains N. Thus 7 is an ideal of A. It is easy to

see that 7* g 3 and Lemma 2 assures us that 3 ̂  I*. Thus I* = 3, and

our mapping is exhaustive. To see that it is one-to-one, let I* = J*

for ideals land J of A. If aEI, then RaEI* = J*, Ra = Rb+v with
bE J and v GN. Then Ra-bENi^Mr, and the condition U yields

a = bEJ- We have shown that I¿J, and an interchange of I and J

yields 7 = 7. To complete the proof, it suffices to remark that if

I^J, then I*£J* and that 7 = [a; RaEI*] shows that 7*^7* im-

plies that 72:7. Thus our mapping 7—>7* is one-to-one and pre-

serves order, and is, therefore, a lattice isomorphism.

Remark. The anti-isomorph of a simple example previously given

by us [8] shows that Theorem 1 need not be true when the condition

U is suppressed. This example is an algebra A (over a field F) with

basal units e and u and multiplication table: ee = uu=e, eu=0,

ue — u. It was shown in [8] that A is simple. With respect to the

given basis, the right multiplications of A are represented by matrices

of the form

R*= | (x= ae + ßu;a,ßEF).
Lß ocj

Thus MT = Mr* in our example. If x' =a'e+ß'u, with a', ß'EF, then

RXX'—RxRX'=ß'Ry, where y=ße—au. Thus NT = Mr = M?. Since we

always have N^NT, it is clear that A satisfies neither condition U nor

condition U(. Since

-a
we easily see that j17=P2, a total matric ring over F. Then we see

that N=M, by the known form of right ideals of F2. The conclusion

of Theorem 1 does not hold for A. Our example shows also that our
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next theorem is false when the condition U¡ is suppressed.

Theorem 2. Let A be a ring which satisfies the condition U¡. Then

the mapping /—»/+= [Ra+vr; aEI, vrENr] is a lattice isomorphism

between the right ideal lattice of A and the lattice of all right ideals of

M? which contains Nr.

We shall not give the proof, since it is almost a verbatim repetition

of the proof of Theorem 1.

It is well known that we may embed an arbitrary ring A into a

ring A' which has a unit element and is such that A is an ideal of A'.

This may be done, of course, in infinitely many different ways. It

should be observed that the usual construction also yields the fact

that every (right) ideal of A is a (right) ideal of A'. Then we may

obtain a lattice isomorphism of the (right) ideal lattice of A and the

sublattice of all right ideals of M' (of iM'r)*) which contain TV' (N'T)

and which are contained in the right ideal [Ra+v'; aEA, v'EN'] of

M' (the right ideal [Ra+v'r; aEA, vTEN'T] of (Ml)*).

2. Automorphisms of rings. Let A be a ring which satisfies condi-

tion U¡ and let S* be an automorphism of M* such that NTS* = Nr

and MrS* = Mr. Then, if xEA, we may define xS uniquely by means

of the equation RxS*=Rxs- We shall prove that the mapping 5:

x—>x5 is an automorphism of A. Clearly AS = A, since MrS* = Mr.

Also xS=yS gives RxS*=RyS*, Rx = Ry, x = y by condition Uj. Thus

5 is a one-to-one mapping of A onto A. To see that 5 is an auto-

morphism of A, first compute RxS+vs = Rxs+Rys = RxS* + RyS*

= iRx+Ry)S* = (Rx+y)S* = Rix+y)s- Then condition U¡ gives (x+y)5

=xS+yS. Observe that iRxv-RxRy)S* = RXyS*-iRxS*)iRyS*)

= R(Xy)s — RxsRysENr, since NrS* = Nr. Now we see that R(XV)s

— R(xS)(yS)ENr. Finally, condition U¡ gives (xy)S = (xS)(yS), and 5

is an automorphism of A.

If S* is an automorphism of M which maps each of the sets N,

Mr, and Mi onto itself, then NTS* = Nr, provided that the condition

U is valid. To see this, note that iRXy — RxRv)S* = RxvS* — iRxSíl)

■iRySi*)=Ru—RvRw = Ru—Rvv>+Vr, where u, v, wEA and vrENr.

Condition U yields u — vw = 0, iRXy — RxRy)S?ENr, and it follows

that NrS* ^ 7Vr. Since (Si*)-1 is also an automorphism of M satisfying

our requirements, we find also that iV,(S*)-1 ^ Nr, so that NrS* = Nr,

as desired.

Theorem 3. Let G be the group of automorphisms S of a ring A which

satisfies condition U. Let H be the group of automorphisms of M which

map each of the sets N, M„ and Mt onto itself. Then the mapping
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S*: ri—>ßS* = S~1pS is in H for every SEG, and the mapping S—>S*

is an isomorphism of G onto 77.

Proof. It is clear that S* is an automorphism of M and that

(S*)~1 = (S~1)*. To prove that S* maps Mr onto itself, note that

RaS* = S-^S^RasEMr, so that MTS*^MT, and Mr(S*)~l=Mr,
MTS* = Mr. The proof that M¡S* = Mi is dual. The generators of N

are carried by S* into N, so that NS*^N, N(S*)~1^N, NS* = N.

We have proved that S*EH-

Now let 2G77. Then our remarks preceding the statement of

Theorem 3 show that RxX = Rxs defines an automorphism x—>x5

of A. Then we have Rxs = S~1RxS = RxS* = Rx2 for every xEA.

Dually, we find that LxHi = LxT defines an automorphism x—>xT

of A, and LxT=T~1LxT = LxT* = LxZ. Then S=T, since Rx — Lx

EN, (RX-LX)2EN, (RxS-LxT)EN, RxS-RxTEN, xS=xT for

every xEA by condition U. Hence Lx~L=LxS*, and p2=pS* for

every p.EM follows readily since 2 is an automorphism of M. We

have proved that the mapping S—>S* is onto 77. That this mapping is

a homomorphism is a trivial consequence of its definition. The kernel

consists of those elements SEG such that S* = I, Rx = RXS* = S^R^

= Rxs, x = xS for every xEA by condition U, 5 = 7. Thus the map-

ing 5—»S* is actually an isomorphism and the proof is complete.

The following theorem is proved in similar fashion.

Theorem 4. Let G be the group of automorphisms S of a ring A

which satisfies condition \J¡. Let 77 be the group of automorphisms of M*

which map each of the sets Nr and Mr onto itself. Then the mapping S* :

p-^pS* = S~xpS is in H for every SEG, and the mapping S—>S* is an

isomorphism of G onto H.

We conclude with the following theorem on inner automorphisms

of M.

Theorem 5. Let A be a ring which satisfies condition U and let S be

an automorphism of A. Then there exists a nonsingular ßoEM such

that S~1ßS=ßö1rlßofor every p-EM (if and) only if SEM.

Proof. Let the requirement of the theorem hold. Set p=Rx, and

use S~1RxS = Rxs, ju¿~1 = 7<,-f-j' (valid by Lemma 2), to obtain Rxs

= (Ra+v)Rxßo = RaRXrj.o+vi-\-Ry+v2, where y = aRxß0, and we have

used Lemma 1. Now apply condition U to find that xS=aRxpo

= xLaßo, S = La(jLoEM, as desired.
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