BERNSTEIN POLYNOMIALS FOR FUNCTIONS OF TWO VARIABLES OF CLASS \(C^{(k)} \)

EDWARD H. KINGSLEY

Introduction. Let \(\phi(x, y) \) be a continuous function of the real variables \(x \) and \(y \), where \(x \) and \(y \) are in the closed region \(R: 0 \leq x \leq 1, \ 0 \leq y \leq 1 \). The Bernstein polynomial \(B_{mn}(x, y) \) associated with the function \(\phi(x, y) \) is defined as

\[
B_{mn}(x, y) = \sum_{p=0}^{n} \sum_{q=0}^{m} \phi \left(\frac{p}{n}, \frac{q}{m} \right) \lambda_{n,p}(x) \lambda_{m,q}(y)
\]

where \(\lambda_{n,p}(x) = C_{n,p} x^p (1-x)^{n-p}, \lambda_{m,q}(y) = C_{m,q} y^q (1-y)^{m-q} \).

A function \(\phi(x, y) \) is said to be of class \(C^{(k)} \) for \(x \) and \(y \) in \(R \), if the partial derivatives of order \(1, 2, \cdots, k \) of \(\phi(x, y) \) exist and are continuous. We shall use the notation

\[
\phi^{(i,k-i)} = \frac{\partial^{(k)} \phi(x, y)}{\partial x^i \partial y^{k-i}} \quad (i = 0, 1, \cdots, k)
\]

and, for brevity, shall omit functional arguments from expressions whenever possible.

It is the purpose of this paper to prove the

Theorem. If \(\phi(x, y) \) is of class \(C^{(k)} \) for \(x \) and \(y \) in \(R \), then

\[
\lim_{m,n \to \infty} B^{(i,k-i)}_{mn} = \phi^{(i,k-i)}
\]

and the convergence is uniform in \(R \).

This theorem, for functions of one variable and for \(k = 0 \), was proved by S. Bernstein [1],2 and again for functions of one variable but for arbitrary \(k \), the theorem was proved by S. Wigert [2]. The process of extending the results of Bernstein and Wigert to functions of two variables of class \(C^{(k)} \) introduces aspects which are of interest.

Preliminary results. We shall make use of the relations

\[
\sum_{p=0}^{n} \lambda_{n,p}(x) = 1,
\]

Received by the editors December 12, 1949.

1 This is part of a thesis written under the direction of Professor E. D. Hellinger for the degree M.S. at Northwestern University, June 1949.

2 Numbers in brackets refer to the bibliography at the end of the paper.

64
If we define, for $k \geq 0$, $i = 0, 1, \ldots, k$,

$$A^{(i,k-i)}_{p,q} = \sum_{a=0}^{i} \sum_{b=0}^{k-i} (-1)^{a+b} C_{i,a} C_{k-i,b} \left(\frac{p + (i - \alpha)}{n}, \frac{q + (k - i - \beta)}{m} \right),$$

then, by mathematical induction, the following two lemmas can be established.

Lemma 1. If $0 \leq i \leq k$, $i \leq n$, $k \leq m$, x and y in R, then the kth partial derivatives of the Bernstein polynomials (1) are given by

$$B^{(i,k-i)}_{mn} = \frac{n!m!}{(n-i)!(m-k+i)!} \sum_{p=0}^{n-i} \sum_{q=0}^{m-k+i} A^{(i,k-i)}_{p,q} \lambda_{n-i,p} \lambda_{m-k+i,q}.$$

Lemma 2. If $0 \leq i \leq k$, $0 \leq p \leq n-i$, $0 \leq q \leq m-k+i$, and if $\phi(x, y)$ is of class $C^{(k)}$ for x and y in R, then there exist two real numbers $\xi = \xi(p)$, $\gamma = \gamma(q)$ such that $0 < \xi < 1$, $0 < \gamma < 1$ and such that

$$A^{(i,k-i)}_{p,q} = \frac{1}{n!m^{k-i}} \phi^{(i,k-i)} \left(\frac{p + \xi}{n}, \frac{q + \gamma(k - i)}{m} \right).$$

The next lemma is basic for the proof of the theorem.

** Lemma 3.** For fixed x and y in R and for fixed positive integers M and N, let d be an arbitrary positive number and let $a(p, q)$ be a quantity dependent upon p and q and such that

$$|a(p, q)| \leq \pi_1 \text{ for } \left| x - \frac{p}{N} \right| \leq d \text{ and } \left| y - \frac{q}{M} \right| \leq d,$$

$$|a(p, q)| \leq \pi_2 \text{ for } \left| x - \frac{p}{N} \right| > d \text{ and } \left| y - \frac{q}{M} \right| > d.$$

Furthermore, assume that it is possible to split off from $a(p, q)$ terms $a'(p)$ independent of q or terms $b'(q)$ independent of p, that is,

$$a(p, q) = a''(p, q) + a'(p) = b''(p, q) + b'(q)$$

such that

$$|a''(p)| \leq \pi_3 \text{ for } \left| x - \frac{p}{N} \right| \leq d \text{ and } \left| y - \frac{q}{M} \right| > d,$$

$$|a'(p, q)| \leq \pi_4 \text{ for } \left| x - \frac{p}{N} \right| \leq d,$$

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
\[b''(p, q) \leq \pi_s \text{ for } \left| x - \frac{p}{N} \right| > d \] and \[\left| y - \frac{q}{M} \right| \leq d, \]

then
\[
\sum_{p=0}^{N} \sum_{q=0}^{M} a(p, q)\lambda_{N,p}\lambda_{M,q} \leq \pi_1 + \pi_4 + \pi_8 + \frac{\pi_2(M + N)}{8MN^2d^2} + \frac{\pi_5}{4M^2d^2} + \frac{\pi_8}{4Nd^2}.
\]

Proof. Consider the inequality
\[
\sum_{p=0}^{N} \sum_{q=0}^{M} a(p, q)\lambda_{N,p}\lambda_{M,q} \leq \sum_{|x-p/N| \leq d} \sum_{|y-q/M| \leq d} |a(p, q)| \lambda_{N,p}\lambda_{M,q} + \sum_{|x-p/N| > d} \sum_{|y-q/M| > d} |a''(p, q) + a'(p)| \lambda_{N,p} + \lambda_{M,q} + \sum_{|x-p/N| > d} \sum_{|y-q/M| > d} |b''(p, q) + b'(q)| \lambda_{N,p}\lambda_{M,q}
\]

\[= s_1 + s_2 + s_3 + s_4, \]

then
\[s_1 \leq \sum_{|x-p/N| \leq d} \sum_{|y-q/M| \leq d} \lambda_{N,p}\lambda_{M,q} \leq \pi_1 \sum_{p=0}^{N} \sum_{q=0}^{M} \lambda_{N,p}\lambda_{M,q} = \pi_1 \]

and hence \(s_1 \leq \pi_1. \)

The inequalities in (5) imply the inequality
\[
\frac{M^2(Mx - p)^2 + N^2(My - q)^2}{2M^2N^2d^2} > 1
\]

and by (5) again
\[
|a(p, q)| \leq \pi_2 < \frac{\pi_2}{2M^2N^2d^2} \{M^2(Nx - p)^2 + N^2(My - q)^2\}.
\]
thus

\[S_2 \leq \frac{\pi_2}{2M^2N^2d^2} \sum_{p=0}^{N} \sum_{q=0}^{M} \left\{ M^2(Nx - p)^2 + N^2(My - q)^2 \right\} \lambda_{N,p} \lambda_{M,q} \]

\[= \frac{\pi_2}{2MN^2d^2} \left[Mx(1 - x) + Ny(1 - y) \right] \]

(by (3) and (2))

and since

\[\max_{x,y \in R} \left[Mx(1 - x) + Ny(1 - y) \right] = \frac{M + N}{4} , \]

we have

\[S_2 \leq \frac{\pi_2(M + N)}{8MN^2d^2} . \]

In similar fashion, using (6), (7), (8), and (9), we obtain

\[S_3 \leq \frac{\pi_3}{4Md^2} , \quad S_4 \leq \frac{\pi_5}{4Nd^2} . \]

Collecting these estimates in (11) we obtain (10).

Proof of the theorem. By Lemmas 1 and 2, we have the inequality

\[|B_{mn}^{(i,k-\ell)} - \phi^{(i,k-\ell)}| \]

\[\leq \left| \sum_{p=0}^{n-i} \sum_{q=0}^{m-k+i} \left\{ 1 - \frac{n!m!}{(n-i)!((m-k+i)!n_m^m k-i)!} \right\} \phi^{(i,k-\ell)} \left(\frac{p + \xi i}{n}, \frac{q + \gamma(k - i)}{m} \right) \lambda_{n-i,p} \lambda_{m-k+i,q} \right|

\[+ \sum_{p=0}^{n-i} \sum_{q=0}^{m-k+i} \left\{ \phi^{(i,k-\ell)} \left(\frac{p + \xi i}{n}, \frac{q + k(k - i)}{m} \right) \right\} \lambda_{n-i,p} \lambda_{m-k+i,q} \right| = S_1 + S_2. \]

We first estimate \(S_2 \). Let \(\phi^{(i,k-\ell)}(x, y) = \psi(x, y) \), then since \(\psi(x, y) \) is continuous for \(x \) and \(y \) in \(R \), it is uniformly continuous and bounded on \(R \). That is, for an arbitrary positive number \(\epsilon \), there exists a number \(d(\epsilon) > 0 \) such that if \(|x - x_1| \leq d(\epsilon)/2 \) and \(|y - y_1| \leq d(\epsilon)/2 \), where \(x_1 \) and \(y_1 \) are in \(R \), then

\[|\psi(x_1, y_1) - \psi(x, y)| \leq \epsilon/6 \]

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
and

\[|\psi(x, y)| \leq L^{(k)}, \quad \text{for } x \text{ and } y \text{ in } \mathbb{R}, \]

where \(L^{(k)} = \max_{x,y \in \mathbb{R}} |\psi(x, y)|. \)

If \(p, n, i \) are positive integers such that \(0 \leq p \leq n - i \), and if \(\xi \) is a real number such that \(0 < \xi < 1 \), then

\[\left| \frac{p}{n - i} - \frac{p + \xi i}{n} \right| < \frac{i}{n}, \]

and if \(m, q, k, i \) are positive integers such that \(0 \leq q \leq m - (k - i) \), and \(\gamma \) a real number such that \(0 < \gamma < 1 \), then

\[\left| \frac{q}{m - k + i} - \frac{q + \gamma(k - i)}{m} \right| < \frac{k - i}{m}. \]

Now if \(x \) is fixed and \(P \) is such that \(0 \leq P \leq n - 1 \) and \(|x - P/(n - i)| \leq d(e)/2 \), then by (14)

\[\left| x - \frac{P + \xi i}{n} \right| \leq \frac{d(e)}{2} + \frac{i}{n} \]

and if we choose

\[N_{1x} > 2i/d(e) + i, \]

then for \(n > N_{1x} \)

\[i/n < d(e)/2 \]

and

\[\left| x - \frac{P + \xi i}{n} \right| \leq d(e) \quad \text{if } n > N_{1x}. \]

In the same manner, choose

\[M_{1x} > (k - i) + \frac{2(k - i)}{d(e)}; \]

then for fixed \(y \) and \(q \) such that \(0 \leq q \leq m - k + i \) and \(|y - q/(m - k + i)| \leq d(e)/2 \), we obtain from (15)

\[\left| y - \frac{q + \gamma(k - i)}{m} \right| \leq d(e) \quad \text{if } m > M_{1x}. \]

If we choose \(x_1 = (P + \xi i)/n \), \(y_1 = (q + \gamma(k - i))/m \) in (12), then from (16), (17) we have

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
BERNSTEIN POLYNOMIALS

(18) \[|\psi\left(\frac{p + \xi i}{n}, \frac{q + \gamma(k - i)}{m}\right) - \psi(x, y)| \leq \frac{e}{6} \]

if \(n > N_{1n}, \ m > M_{1m}, |x - (p + \xi i)/n| \leq d(\varepsilon)/2, \ |y - (q + \gamma(k - i))/m| \leq d(\varepsilon)/2. \)

If we now let:
- \(\Delta_{n-i} \) indicate summation for all \(p \) such that \(|x - p/(n - i)| \leq d(\varepsilon)/2, \)
- \(\Delta'_{n-i} \) indicate summation for all \(p \) such that \(|x - p/(n - i)| > d(\varepsilon)/2, \)
- \(\Delta_{m-k+i} \) indicate summation for all \(q \) such that \(|y - q/(m - k + i)| \leq d(\varepsilon)/2, \)
- \(\Delta'_{m-k+i} \) indicate summation for all \(q \) such that \(|y - q/(m - k + i)| > d(\varepsilon)/2, \)

then \(S_2 \) may be written as

\[
S_2 \leq \sum_{\Delta_{n-i}} \sum_{\Delta_{m-k+i}} \psi\left(\frac{p + \xi i}{n}, \frac{q + \gamma(k - i)}{m}\right) - \psi(x, y) \lambda_{n-i, p, m-k+i, q} \\
+ \sum_{\Delta'_{n-i}} \sum_{\Delta'_{m-k+i}} \psi\left(\frac{p + \xi i}{n}, \frac{q + \gamma(k - i)}{m}\right) - \psi(x, y) \lambda_{n-i, p, m-k+i, q} \\
+ \sum_{\Delta_{n-i}} \sum_{\Delta_{m-k+i}} \psi\left(\frac{p + \xi i}{n}, \frac{q + \gamma(k - i)}{m}\right) - \psi\left(\frac{p + \xi i}{n}, y\right) \lambda_{n-i, p, m-k+i, q} \\
+ \sum_{\Delta'_{n-i}} \sum_{\Delta'_{m-k+i}} \psi\left(\frac{p + \xi i}{n}, \frac{q + \gamma(k - i)}{m}\right) - \psi\left(x, \frac{q + \gamma(k - i)}{m}\right) \lambda_{n-i, p, m-k+i, q} \\
+ \sum_{\Delta_{n-i}} \sum_{\Delta_{m-k+i}} \psi\left(x, \frac{q + \gamma(k - i)}{m}\right) - \psi(x, y) \lambda_{n-i, p, m-k+i, q} \\
+ \sum_{\Delta'_{n-i}} \sum_{\Delta'_{m-k+i}} \psi\left(x, \frac{q + \gamma(k - i)}{m}\right) - \psi(x, y) \lambda_{n-i, p, m-k+i, q}.
\]
If we use (13) and (18) and let
\[a(p, q) = \psi\left(\frac{p + \xi i}{n}, \frac{q + \gamma (k - i)}{m}\right) - \psi(x, y), \]
\[d = d(e)/2, \]
\[\pi_1 = \pi_4 = \pi_6 = e/6, \]
\[\pi_2 = \pi_3 = \pi_5 = 2L^{(e)}, \]
then the hypotheses of Lemma 3 are satisfied and (19) becomes
\[S_2 \leq \frac{e}{2} + \frac{3L^{(e)}}{[d(e)]^2} \left(\frac{1}{n - i} + \frac{1}{m - k + i} \right), \quad \text{for } n > N_{1e}, m > M_{1e}. \]

To estimate \(S_1 \), we note that there exist two numbers \(N_{2e} > i, M_{2e} > k - i \) such that if \(n > N_{2e}, m > M_{2e} \), then
\[\left| 1 - \frac{n!m!}{(n - i)!(m - k + i)!} \right| < \frac{e}{6L^{(e)}}. \]

Thus
\[S_1 \leq \frac{e}{6L^{(e)}} \sum_{p=0}^{n-i} \sum_{q=0}^{m-k+i} \psi\left(\frac{p + \xi i}{n}, \frac{q + \gamma (k - i)}{m}\right) |\lambda_{n-i, p}\lambda_{m-k+i, q}| \]
\[\leq \frac{e}{6} \sum_{p=0}^{n-i} \sum_{q=0}^{m-k+i} \lambda_{n-i, p}\lambda_{m-k+i, q}, \]
and hence
\[S_1 \leq e/6. \]

Using these estimates of \(S_1 \) and \(S_2 \) we have
\[|B^{(k)}_{mn} - \phi^{(i, k-i)}| \leq \frac{2}{3} e + \frac{3L^{(e)}}{[d(e)]^2} \left[\frac{1}{n - i} + \frac{1}{m - k + i} \right] \]
for \(n > N_{1e}, N_{2e}; m > M_{1e}, M_{2e} \).

Let
\[N_{2e} > i + \frac{18L^{(e)}}{e[d(e)]^2}, \]
\[M_{2e} > (k - i) + \frac{18L^{(e)}}{e[d(e)]^2}, \]
and take
\[N_\varepsilon = \max (N_1 \varepsilon, N_2 \varepsilon, N_3 \varepsilon), \]
\[M_\varepsilon = \max (M_1 \varepsilon, M_2 \varepsilon, M_3 \varepsilon). \]

In (21) let \(n > N_\varepsilon \) and such that
\[3L^{(k)} \left[\frac{1}{d(\varepsilon)} \right]^2(n - i) < \frac{\varepsilon}{6}, \]
and in (22) let \(m > M_\varepsilon \) and such that
\[3L^{(k)} \left[\frac{1}{d(\varepsilon)} \right]^2(m - k + i) < \frac{\varepsilon}{6}. \]

Thus, for \(n > N_\varepsilon \) and \(m > M_\varepsilon \), (20) becomes
\[\left| B^{(i, k-i)}_{m, i} - \phi^{(i, k-i)} \right| < \varepsilon \]
and the theorem is proved.

Bibliography