REMARKS ON A THEOREM OF E. J. McSHANE

B. J. PETTIS

In a recent paper E. J. McShane [3] has given a theorem which is the common core of a variety of results about Baire sets, Baire functions, and convex sets in topological spaces including groups and linear spaces. In general terms his theorem states that if \(\mathcal{J} \) is a family of open maps defined in one topological space \(X_1 \) into another, \(X_2 \), the total image \(\mathcal{J}(S) \) of a second category Baire set \(S \) in \(X_1 \) has, under certain conditions on \(\mathcal{J} \) and \(S \), a nonvacuous interior. The point of these remarks is to show that his argument yields a theorem for a larger class than the second category Baire sets. From this there follow slightly stronger and more specific versions of some of his results, including his principal theorem, as well as a proof that if \(S \) is a subset of a weak sort of topological group and \(S \) contains a second category Baire set, then the identity element lies in the interior of both \(S^{-1}S \) and \(SS^{-1} \). There is also at the end an extension of Zorn's theorem on the structure of certain semigroups.

In a topological space \(X \) let the closure and interior of a set \(E \) be denoted by \(E^* \) and \(E^o \) and the null set by \(\Lambda \). For any set \(S \) let \(I(S) = \bigcup \{ G \mid C^o \text{ open, } G \cap S \text{ is first category} \} \) and \(II(S) = X - I(S) \), and let \(III(S) \) be the open set \(II(S)^o \cap I(X - S) \). By a fundamental theorem of Banach [2], \(S \cap I(S)^* \) is first category and hence \(S \) is second category if and only if \(II(S)^o \neq \Lambda \). From these we note that if \(N \) is a non-null open subset of \(III(S) \), then \(N - S \) is in the first category set \(I(X - S) \), and \(N \cap S \) cannot be first category since \(N \) is non-null open and disjoint with \(I(S) \). This gives us the following lemma.

Lemma 1. For any non-null open subset \(N \) of \(III(S) \), the sets \(N - S \) and \(N \cap S \) are first and second category respectively.

We recall that \(S \) is defined to be a Baire set in \(X \) if \((S - G) \cup (G - S) \) is first category for some open set \(G \); an equivalent condition is \(II(S)^o \subset I(X - S) \), or \(II(S)^o = III(S) \).

Definition. \(\mathfrak{B}(X) \) is the family of all second category Baire sets in \(X \). A set \(S \) is in \(\mathfrak{A}(X) \) if and only if \(S \) contains an element of \(\mathfrak{B}(X) \).

Received by the editors December 15, 1949 and, in revised form, January 27, 1950.

1 This paper was written under Contract N7-onr-434, Task Order III, Navy Department (The Office of Naval Research).

2 Numbers in brackets refer to the references at the end of the paper.

166
REMARKS ON A THEOREM OF E. J. McSHANE 167

Any member \(S \) of \(\mathfrak{A}(X) \) is characterized by \(I(X-S) \supset II(S)^\circ \neq \Lambda \) or by \(III(S) = II(S)^\circ \neq \Lambda \). A characterization of the class \(\mathfrak{A}(X) \), which is generally larger (for example, when \(X \) is the reals), is given by the following lemma.

Lemma 2. \(S \in \mathfrak{A}(X) \) is equivalent to each of these: (1) \(III(S) \neq \Lambda \), (2) there is a non-null open set \(N \) such that \(N - S \) is first category and \(N \cap S \) is second category.

If \(S \in \mathfrak{A}(X) \), let \(B \in \mathfrak{A}(X) \) with \(B \subseteq S \). The latter implies \(II(S)^\circ \supset II(B)^\circ \) and \(I(X-S) \supset I(X-B) \) and hence \(III(S) \supset III(B) \neq \Lambda \). When (1) holds, the set \(N = III(S) \) satisfies (2) by Lemma 1 above. When (2) is true, let \(B = N \cap S \). Then \(B \) is second category and differs from the open set \(N \) only on the first category set \(N - S \); thus \(B \in \mathfrak{A}(X) \).

Now let \(X_1 \) and \(X_2 \) be topological spaces and \(\mathcal{J} = \{ f \} \) a non-null family of functions defined in \(X_1 \) to \(X_2 \) where the domain of definition \(D_f \) of each \(f \) is open in \(X_1 \) and each \(f \) is open on its domain to \(X_2 \), that is, maps open sets into open sets. For any sets \(E_1 \subseteq X_1 \) and \(E_2 \subseteq X_2 \) we shall write \(\mathcal{J}(E_1) \) for the set \(\bigcup \{ f(E_1 \cap D_f) \mid f \in \mathcal{J} \} \) and \(\mathcal{J}^{-1}(E_2) \) for the set of all \(x \in X_1 \) such that \(f(x) \) is defined and in \(E_2 \) for some \(f \in \mathcal{J} \).

For any pair of sets \(S_0 \) and \(N \) in \(X_1 \) consider these conditions on \(S_0, N, \) and \(\mathcal{J} \): (i) \(S_0 \neq \Lambda \) and \(S_0 \subseteq D_f \) for each \(f \in \mathcal{J} \); (ii) \(N \) is open and \(N \supset S_0 \); (iii) \(f(N \cap D_f) \subseteq \mathcal{J}(S_0) \) for each \(f \in \mathcal{J} \). We note that (iii) is equivalent to the following: (iii') \(y \in \mathcal{J}(N) \) implies \(S_0 \cap \mathcal{J}^{-1}(y) \neq \Lambda \). The essential proposition in McShane's theorem can be stated as follows.

Lemma 3. When \(\mathcal{J}, S_0, \) and \(N \) satisfy (i), (ii), and (iii), \(\mathcal{J}(S_0) \) is non-null and open.

For (following McShane) if \(U = \bigcup f(N \cap D_f) \), then from the original assumptions on \(\mathcal{J} \) clearly \(U \) is open in \(X_2 \), and \(U \subseteq \mathcal{J}(S_0) \) from (iii). By (i) and (ii) on the other hand, \(S_0 \subseteq D_f \cap N \) for each \(f \) and hence \(\mathcal{J}(S_0) \subseteq U \). And \(\mathcal{J}(S_0) \neq \Lambda \) since \(S_0 \) and \(\mathcal{J} \) are nonvacuous and \(S_0 \subseteq D_f \) for all \(f \).

Now suppose these are true for two sets \(N \) and \(S \) in \(X_1 \): (i') \(\Lambda \neq N \cap S \subseteq D_f \) for all \(f \) in \(\mathcal{J} \); (ii') \(N \) is open. If we set \(S_0 = N \cap S \) clearly (i) and (ii) hold; hence we have the following lemma.

Lemma 4. If \(\mathcal{J}, S, \) and \(N \) satisfy (i') and (ii') and also either (iii) or (iii') with \(S_0 = N \cap S \), then \(\mathcal{J}(N \cap S) \) is a non-null open set.

Obviously (iii') is true for \(S_0 = N \cap S \) if \(N \cap S \cap \mathcal{J}^{-1}(y) \) is second
category for each \(y \in \mathcal{J}(N) \); and the latter clearly holds whenever \(N - S \) is first category and the following is true: (iii’’) \(y \in \mathcal{J}(N) \) implies \(N \cap \mathcal{J}^{-1}(y) \) is second category. Lemma 4 now gives us the following lemma.

Lemma 5. \(\mathcal{J}(N \cap S) \) is non-null and open whenever \(\mathcal{J} \), \(S \), and \(N \) satisfy (i’), (ii’), and (iii’’) and \(N - S \) is first category.

From Lemmas 1 and 5 we have immediately the following theorem.

Theorem. \(\mathcal{J}(N \cap S) \) is non-null and open provided that \(N \) is a non-null open subset of \(III(S) \), that \(D_f \supseteq S \cap N \) for each \(f \) in \(\mathcal{J} \), and that (iii’’) is satisfied.

In view of Lemma 2 the theorem is concerned with and only with elements \(S \) of \(\mathfrak{A}(X_1) \). When \(S \) is in the more restricted class \(\mathfrak{B}(X_1) \), that is, when \(III(S) = II(S)^0 \neq \Lambda \), the following slightly sharper version of McShane’s theorem results on taking \(N \) to be \(II(S)^0 \).

Corollary 1. If \(S \in \mathfrak{B}(X_1) \), if \(D_f \supseteq S \cap II(S)^0 \) for each \(f \) in \(\mathcal{J} \), and if \(II(S)^0 \cap \mathcal{J}^{-1}(y) \) is second category for each \(y \in \mathcal{J}(N) \), then \(\mathcal{J}(S) = \mathcal{J}(S \cap II(S)^0) \cup \mathcal{J}(S \cap II(S)^0)^* \) where \(\mathcal{J}(S \cap II(S)^0) \) is non-null and open in \(X_2 \) and \(S \cap II(S)^0 \) is first category in \(X_1 \).

Now let \(X \) be a group having a topology in which \(xy \) is continuous in each variable and let \(e \) be the identity element. We recall the following properties of the function \(II(E) \) in any topological space [2, pp. 46–47]: (a) \(II(E) \) is always closed, \(II(II(E)) = II(E) \), and \(II(E) \subseteq II(F) \) when \(E \subseteq F \); (β) \(II(E)^0 \cap E^* = II(E) \cap E^* \); (γ) for any open set \(G \), \(II(G \cap II(E)^0) \supseteq G \cap II(E) \); and (δ) for any homeomorphism \(\phi \) in \(X \), \(II(\phi(E)) = \phi(II(E)) \).

Corollary 2. Let \(R \) be second category in \(X \) and \(S \subseteq \mathfrak{A}(X) \). Suppose \(G \) and \(H \) are open and \(G \cap II(R) \neq H \cap III(S) \). If we set \(A = G \cap R \cap II(R) \) and \(B = H \cap S \cap III(S) \), it follows that \(A^{-1}B \) and \(BA^{-1} \) are non-null open subsets of \(R^{-1}S \) and \(SR^{-1} \) respectively.

For each \(a \in A \) define \(f_a(x) = a^{-1}x \) for all \(x \) in the non-null open set \(N = H \cap III(S) \) and set \(\mathcal{J} = \{ f_a \} \). Since \(G \cap II(R) \neq \Lambda \) it follows from (γ) above that \(A \neq \Lambda \). Thus \(\mathcal{J} \) is non-null, each \(f_a \) is open on its open domain, and \(D_{f_a} \supseteq S \cap N = B \) for each \(f_a \). If it is shown that \(N \cap \mathcal{J}^{-1}(y) \) is second category whenever \(y \in \mathcal{J}(N) \), the theorem is applicable and \(\mathcal{J}(N \cap S) = \mathcal{J}(B) = A^{-1}B \) is a non-null open subset of \(R^{-1}S \). If \(y \in \mathcal{J}(N) \), then \(y = a^{-1}x \) for some \(a \in A \) and \(x \in N \), and \(\mathcal{J}^{-1}(y) = Aa^{-1}x \). Hence \(II(\mathcal{J}^{-1}(y)) = II(Aa^{-1}x) = II(A)A^{-1}x \) by (δ) above; since \(II(A) \supseteq A \) by (γ), it follows that \(II(\mathcal{J}^{-1}(y)) \ni x \). Then, since \(N \ni x \) and is open,
$N \cap \gamma^{-1}(y)$ must be second category. A similar proof, setting $f_*(x) = xa^{-1}$, establishes the theorem’s other assertion.

Taking $G = H = X$ we have the following corollaries.

Corollary 3. Let $S \subseteq \mathbb{A}(X)$. If R is second category then $[R \cap II(R)^{-1}] [S \cap III(S)]$ and $[S \cap III(S)] [R \cap II(R)^{-1}]$ are non-null open subsets of $R^{-1}S$ and SR^{-1} respectively.

Corollary 4. If $S \subseteq \mathbb{A}(X)$ and R^{-1} is second category the sets RS and SR have non-null interiors.

Corollary 5. When $S \subseteq \mathbb{A}(X)$ it follows that $e \in (S^{-1}S)^0 \cap (SS^{-1})^0$.

Corollary 6. If S is a subgroup and $S \subseteq \mathbb{A}(X)$, then $S = S^0$ and hence, since S is a subgroup, $S = S^*$.

Corollaries 4 and 6 are slight extensions of results of McShane and Banach [3]. Corollary 5 for a more restricted X is in another paper [4].

Corollary 7. Suppose E^{-1} is second category in X whenever E is second category. If R is second category and $S \subseteq \mathbb{A}(X)$, then

1. $[R \cap II(R^{-1})^{-1}] [S \cap III(S)]$ and $[S \cap III(S)] [R \cap II(R^{-1})^{-1}]$ are non-null open subsets of RS and SR respectively, and

2. $II(R) III(S)^* \subset ((R^0)^* \cap III(S))^*$ and $III(S)^* II(R) \subset (SR)^0 *$.

Conclusion (1) results immediately from Corollary 3 since R^{-1} is second category. To establish (2) let $C = R \cap II(R^{-1})^{-1}$ and $D = S \cap III(S)$, and note that (1) implies that $C*D^* \subset (CD)^* \subset ((RS)^0)^*$ and $D^*C^* \subset ((SR)^0)^*$. It is thus sufficient to show that $II(R) \subset C^*$ and $III(S) \subset D^*$. The latter follows from (γ) above; for on setting $G = I(X - S)$ and $E = S$ therein we have $II(D) \subset III(S)$ and hence $D^* \subset III(S)$. For the former, consider any open set N intersecting $II(R)$. The set $N \cap R$ is second category and hence $(N \cap R)^{-1}$ is a second category subset of R^{-1}. From this it follows that $(N \cap R)^{-1} \cap II(R^{-1}) \neq \Lambda$, for otherwise $(N \cap R)^{-1}$ is in the first category set $R^{-1} \cap I(R^{-1})$. Taking inverses we have $\Lambda \neq N \cap R \cap II(R^{-1})^{-1} = N \cap C$, proving that $II(R) \subset C^*$.

When $S \subseteq \mathbb{A}(X)$ the terms $III(S)$ and $III(S)^*$ in Corollary 7 can be replaced by $II(S)^0$ and $II(S)$, and hence in particular $II(S)^2 \subset ((S^{1})^{0})^*$. If also S is a semigroup, that is, $S^2 \subset S$, then $II(S)^2 \subset (S^{0})^*$. It may also be remarked that the first assumption in Corollary 7 is weaker than that of assuming x^{-1} to be continuous in x, as is shown by the reals with intervals $a \leq x < b$ as neighborhoods.
Lemma 6. For any sets R and S in X let $\Gamma(R, S) = II(R)S^* \cup R^*II(S) \cup II(R)II(S^*) \cup II(R^*)II(S)$ and $\Delta(R, S) = II(R)S^* \cup R^*II(S) \cup II(R)II(S^*)$. Then $(RS)^* \supseteq II(RS) \supseteq \Gamma(R, S) \supseteq \Delta(R, S) \supseteq II(R)II(S)$.

For any $s \in S$ and $r \in R$ we have $II(R)s = II(Rs) \supseteq II(RS)$ and $rII(S) = II(rs) \supseteq II(RS)$, so that $II(R)S \cup RII(S) \supseteq II(RS)$. Since $II(RS)$ is closed and $A*B \subset (AB)^*$ for any A and B, it follows that $II(R)S^* \cup R^*II(S) \subset II(RS)$. Moreover $II(RS) = II(RII(S)) \supseteq II(RII(S^*)) \cup II(R^*II(S))$. But from what has already been shown we have $II(RII(S^*)) \supseteq II(II(R))S^* \cup II(R)*II(S^*) = II(R)S^* \cup R^*II(S)$, and similarly $II(R^*II(S)) \supseteq II(R^*)II(S) \cup R^*II(S)$. Thus $II(RS) \supseteq \Gamma(R, S)$. The rest is obvious.

From this it is clear that $II(S^2) \supseteq \Gamma(S, S) \supseteq \Delta(S, S) \supseteq II(S)^2$ for any S. Another consequence is the following corollary.

Corollary 8. Suppose E^{-1} is second category whenever E is second category. If R is second category, $S \in B\mathfrak{B}(X)$, and $S \supseteq R \cup S$, then

$$(S^o)^* \supseteq II(R) [\Gamma(R, S) \cup \Gamma(S, R)] \cup [\Gamma(R, S) \cup \Gamma(S, R)] \cup R \supseteq II(R).$$

Clearly $(S^o)^* \supseteq (RS)^o)^*$, and from a remark after Corollary 7,

$$(RS)^o \supseteq II(R)II(S).$$

At the same time, obviously $II(S) \supseteq II(RS) \cup II(SR)$, where $II(RS) \supseteq \Gamma(R, S)$ and $II(SR) \supseteq \Gamma(S, R)$ by Lemma 6. Thus $(S^o)^* \supseteq II(R) [\Gamma(R, S) \cup \Gamma(S, R)]$. Similarly, $(S^o)^* \supseteq ((SR)^o)^* \supseteq II(R) \cup \Gamma(R, S) \cup \Gamma(S, R) \cup R \supseteq II(R)$.

When S_1 is a semigroup, this has obvious consequences, first when $S_1 \in B\mathfrak{B}(X)$ and $R = S = S_1$ and second when S_1 is in $B\mathfrak{B}(X)$ and $R = S_1^{-1}$ and $S = X - S_1$. These together imply Corollary 5 of [3].

Lemma 7. For any subset S of a topological space X these conditions are equivalent: (1) S is a Baire set, $S \subseteq II(S)$, and $X - S \subseteq X - S$; (2) the equalities (i) $S^o = II(S)^o = (S^o)^o = I(X - S)$ and (ii) $S^* = II(S) = (S^o)^* = (X - S)^*$ are true; (3) equalities (i) and (ii) hold when S and $X - S$ are interchanged.

Taking complements in (i) and (ii) yields (ii) and (i) with S and $X - S$ interchanged; thus (2) and (3) are equivalent. Concerning (1) and (2) we note that by (b) above $S \subseteq II(S)$ is equivalent to (4) $S^* = II(S)$, that $X - S \subseteq X - S$ is equivalent to $(X - S)^* = II(X - S)$, that is, to (5) $S^o = I(X - S)$, and recall that S is a Baire set if and only if (6) $II(S)^o \subseteq I(X - S)$. Obviously (2) now implies (1). Conversely, (1) implies (4), (5), and (6), where (6) implies (7) $II(S) \subseteq I(X - S)^*$ since $II(S) = (II(S)^o)^*$. From (4), (7), and (5) we have $S^* = II(S) \subseteq I(X - S)^* = (S^o)^*$; since $(S^o)^* \supseteq S^*$, (ii) follows.
Taking interiors in (ii) yields \((S^*)^0 = II(S)^0 = (I(X-S)^*)^0\); since
\[(I(X-S)^*)^0 = ((I - II(X-S))^0)^0 = (X - II(X-S)^0)^0 = X - (II(X-S)^0)^0 = I(X-S)\text{ and (5) holds, (i) now follows also.}\]

Lemmas 6 and 7, which are independent of the other lemmas and corollaries, provide the following mild extension of Zorn's theorem on the structure of a semigroup \(S\) when \(S\) is a Baire set such that \(S\) and \(S^{-1}\) are second category at \(e\) [1, pp. 157–158; 3, Corollary 6].

Theorem. Suppose \(S\) is a Baire set and \(S \supset RS\) or \(S \supset SR\) for some \(R\) such that \(II(R)^m \cap II(R^{-1})^n \ni e\) for some \(m\) and \(n \geq 1\). Then (2) and (3) of Lemma 7 are true.

Suppose \(S \supset RS\). From Lemma 6 and the definition of \(\Delta(R, S), S^* \supset II(S) \supset II(RS) \supset \Delta(R, S) \supset II(R)S^*\), so that \(S^* \supset II(S) \supset II(R)S^*\). Multiplying by \(II(R)^k\) we have \(II(R)^k S^* \supset II(R)^{k+1} S^*\), and hence \(S^* \supset II(S) \supset II(R)^k S^*\) for any \(k \geq 1\). When \(e \in II(R)^m\), it is then clear that \(S^* \supset II(S) \supset S^*\), or \(S^* = II(S)\). Since \(S \supset RS\) implies \(X-S \supset R^{-1}(X-S)\), we also have \((X-S)^n = II(X-S)\) in case \(e \in II(R^{-1})^n\) for some \(n \geq 1\). A similar proof applies when \(S \supset SR\). Thus our hypotheses here imply (1) of Lemma 7, and the present conclusion follows.

References

TULANE UNIVERSITY AND

PRINCETON UNIVERSITY