ON A THEOREM OF RÅDSTRÖM

P. ERDÖS

The purpose of this note is to give a new and simplified proof of the following theorem.

Theorem. Let \(f(z) = \sum_{n=0}^{\infty} a_n z^n \) be an entire function. Denote \(M(r) = \max_{|z|=r} |f(z)| \). Assume that \(\limsup \frac{\log M(r)}{r} = \infty \). Then there exists \(\omega_n, n = 0, 1, \ldots \), with \(|\omega_n| = 1 \), so that the origin is a limit point of the roots of the derivatives of \(k(z) = \sum_{n=0}^{\infty} \omega_n z^n \).

In other words the theorem holds if the order \(\rho \) of \(f(z) \) is greater than 1 or if \(\rho = 1 \) and \(f(z) \) is of maximal type.

This theorem is due to Rådström and was proved by him for the case \(\rho > 1 \) in a recent note. The result as announced here is best possible with respect both to order and to type, as is shown by the example \(e^z \), where \(c \) is a constant (cf. footnote 1, p. 400).

We need the following two lemmas.

Lemma 1. Let \(\sum_{n=0}^{\infty} a_n z^n \) be a power series with radius of convergence \(R < \infty \) and such that \(|a_0/a_1| < R \). Then it is possible to find \(w_0, w_1, \ldots \) with \(|w_n| = 1 \) so that \(\sum_{n=0}^{\infty} w_n a_n z^n \) has a zero \(z_0 \) with \(|z_0| \leq |a_0/a_1| \).

Proof. We put \(a_0 = 1 \) and \(a_0 + a_1 z = P_1(z) \). Obviously \(P_1(z) \) has a zero with the required property. We proceed by induction. Suppose that we have succeeded in determining \(\omega_0, \omega_1, \ldots, \omega_{n-1} \) such that the polynomial \(P_{n-1}(z) = \sum_{n=0}^{n-1} \omega_n a_n z^n \) has a zero \(z_0 \) with \(|z_0| \leq |a_0/a_1| \). Consider \(P_{n-1}(z) + a_n z^n, |\omega_n| = 1 \). Three cases may occur:

1. The equation \(|P_{n-1}(z)| = |a_n z^n| \) has a solution on \(|z| = |a_0/a_1| \).
2. \(|P_{n-1}(z)| > |a_n z^n| \) for all \(z \) with \(|z| = |a_0/a_1| \).
3. \(|P_{n-1}(z)| < |a_n z^n| \) for all \(z \) with \(|z| = |a_0/a_1| \).

In case 1, it will obviously be possible to choose \(\omega \) so that \(P_{n-1}(z) + a_n z^n = 0 \) on the circle \(|z| = |a_0/a_1| \). In case 2, \(P_{n-1}(z) + a_n z^n \) has by Rouché's theorem as many zeros inside the circle \(|z| = |a_0/a_1| \) as \(P_{n-1}(z) \), that is, at least one, by the induction hypothesis. In case 3, again by Rouché's theorem, \(P_{n-1}(z) + a_n z^n \) has as many zeros in \(|z| = |a_0/a_1| \) as \(P_{n-1}(z) \), that is, \(n \) zeros. In all these cases we can therefore choose \(\omega = \omega_n, |\omega_n| = 1 \) so that \(P_{n-1}(z) + a_n \omega_n z^n \) has a zero in the circle \(|z_0| = |a_0/a_1| \). Consider now the power series \(\sum_{n=0}^{\infty} \omega_n a_n z^n \).

We know that all its partial sums have zeros in or on the circle \(|z| = |a_0/a_1| \). As this circle is strictly inside the circle of convergence

Received by the editors January 30, 1950.

the same must hold for the infinite series, which proves the lemma.

Lemma 2. Let \(\sum_{n=0}^{\infty} a_n z^n \) satisfy the conditions of Lemma 1, and let \(\epsilon > 0 \) be a positive number. Then there exists an integer \(n \) and numbers \(\omega_0, \omega_1, \ldots, \omega_n \) with \(|\omega_0| = 1 \) such that the series \(\sum_{n=0}^{\infty} \omega_n a_n z^n \) has a zero in the circle \(|z| \leq |a_0/a_1| + \epsilon \), irrespective of the choice of the numbers \(\omega_v \) for \(v \geq n+1 \).

Proof. Let \(r \) be a number with \(|a_0/a_1| < r < \min (R, |a_0/a_1| + \epsilon) \) and such that the series \(f(z) = \sum_{n=0}^{\infty} \omega_n a_n z^n \) constructed in Lemma 1 has a positive minimum \(m \) on the circle \(|z| = r \). Put \(\delta_0 = \sum_{n=0}^{\infty} \omega_n a_n r^n \).

We have \(\delta_n \to 0 \) monotonically. Choose \(n \) so large that \(2 \cdot \delta_n < m \), and let \(g(z) \) be any series which coincides with \(f(z) \) in the first \(n + 1 \) terms whereas in the rest of the terms arbitrary changes of the arguments are allowed. Obviously \(|g(z) - f(z)| < 2 \cdot \delta_n \) for \(|z| \leq r \). Therefore, by Rouché's theorem, \(g(z) \) has as many roots in \(|z| \leq r \) as \(f(z) \), that is, at least one (since \(r > |a_0/a_1| \)). This proves the lemma.

In order to prove the theorem we first observe that if \(\lim \sup \log M(r)/r = \infty \), it follows that \(\lim \inf |a_n/(n+1)a_{n+1}| = 0 \), for otherwise there would exist a \(k > 0 \) such that for all sufficiently large \(n \), \(a_{n+1} < ka_n/(n+1) \). Iterating this we would get, for sufficiently large \(n \), \(a_n < ck^n/n! \), which as is well known implies \(\lim \sup \log M(r)/r \leq k \), an evident contradiction. Therefore there exists a sequence \(n_s \) of integers such that \(a_n/(n+1)(a_{n+1}) \to 0 \). We also observe that \(f^{(n)}(z)/n! = a_n + (n+1)a_{n+1}z + \cdots \). Now choose a sequence \(\epsilon_s \) of positive numbers with \(\epsilon_s \to 0 \). According to Lemma 2 we can find numbers \(\omega_{n_1}, \omega_{n_1+1}, \ldots, \omega_{n_1+p_1} \) so that if in \(f^{(n)}(z)/n! \) we multiply each coefficient with the corresponding \(\omega_v \), we shall get a function which has a zero in \(|z| < |a_n/(n+1)a_{n+1}| + \epsilon_1 \), and we shall still be able to choose \(\omega_v \) arbitrarily if \(\mu > n_1 + p_1 \) without destroying this property. Therefore we can repeat this process, now starting with the smallest \(n_s > n_1 + p_1 \). Call that number \(m_2 \) and put \(m_1 = n_1 \). Then we get a new set of \(\omega_v \)'s, \(\omega_{m_1}, \ldots, \omega_{m_2+p_2} \), and if \(\mu > m_2 + p_2 \) we still have the free choice of the \(\omega_v \). Iterating this process we shall obtain a sequence of nonoverlapping blocks of \(\omega \)'s and we complete it if necessary by choosing \(\omega_v \) arbitrarily for those \(v \) which do not correspond to an \(\omega \) in a block. In this way we get a sequence \(\omega_0, \omega_1, \ldots \) and we construct the corresponding power series \(k(z) = \sum_{n=0}^{\infty} \omega_n a_n z^n \). From the construction and Lemma 2 it is then obvious that \(k(z) \) will have the property: \(k^{(n)}(z) \) has a zero \(z_s \), satisfying \(z_s < |a_{m_1}/(m_1+1)a_{m+1}| + \epsilon_s \). As the sequence \(m_1 \) is a subsequence of \(n_s \), and \(\epsilon_s \to 0 \), it is clear that \(z_s \to 0 \), which proves the theorem.

Princeton, N. J.