GAMES AND SUB-GAMES

SEYMOUR SHERMAN

The determination of the value and optimal strategies of a zero-sum, two-person game with a finite number of pure strategies can be a lengthy process, involving, among other things, the calculation of the value

$$\sup_x \inf_y (xB, y),$$

where B is a real matrix with m rows and n columns, x ranges over the set of row vectors with m components, all non-negative and adding up to one, y ranges over the corresponding set of n-component column vectors, and the pay-off, (xB, y), indicates the inner product of the two vectors xB and y. One device which may simplify a game computation is that of "dominance" or "majorization" [vNM, p. 174] by which the solution of a game is reduced to the solution of a smaller game, that is, one with a smaller number of pure strategies. There is another device which, when conditions are right, may simplify the solution of a game by reducing it to the solution of smaller games. This device, presented here, gives either the value or a bound for it, depending on the information available about the sub-games. It also gives an optimal strategy or a strategy sufficient to insure an outcome not worse than that predicted by the aforementioned bound. It is particularly effective when there are rows (or columns) in B, which are constant or have large constant segments.

Let B be a game matrix (rows maximizing) decomposed into

$$B = \{ B_i^j \mid 1 \leq i \leq M, 1 \leq j \leq N \},$$

where B_i^j is a sub-matrix with m_i rows and n_j columns (the m_i rows being independent of j and the n_j columns being independent of i). Let the value of B be v and the value of B_i^j be v_i^j. Let the set of optimal strategies for the first player in the game be $X = \{ x \}$ and the set of optimal strategies for the first player in the sub-game be $X_i^j = \{ x^i \}$. Let Y and Y_i^j represent the corresponding sets for the

Presented to the Society, April 29, 1950; received by the editors February 22, 1950.

1 This originally appeared in a RAND report: Total reconnaissance with total countermeasures: Simplified model, August 5, 1949, P-106, Rand Corporation, Santa Monica, California. For the definitions in game theory see [vNM]. See the bibliography at the end of the paper.

186
second players. Let \mathbf{B} be the $M \times N$ matrix with entries v_{ij}. Let $\bar{x} = \{x_i | 1 \leq i \leq M, x_i \geq 0, \sum x_i = 1\}$ be a typical optimal strategy for the first player in the game with matrix \mathbf{B}, \bar{X} the set of optimal strategies for the first player in \mathbf{B}, and \bar{y} and \bar{Y} the analogous items for the second player. Let \bar{v} be the value of the game with matrix \mathbf{B}.

Theorem. $\cap_i X_i^j \neq \Lambda$ for each i implies $v \geq \bar{v}$. If $x^i \in \cap_i X_i^j$ for each i and $\bar{x} \in \bar{X}$, then by playing the vector $\{\bar{x}_1 x^1, \bar{x}_2 x^2, \ldots, \bar{x}_M x^M\}$ (where by this notation we mean the vector each of whose first m_i components are \bar{x}_i multiplied by the appropriate one of the m_i components of x^1, and so on) the first player may assure himself of a pay-off of at least \bar{v}.

Proof. Let a typical strategy for II in game with matrix B be

$$y = \{\beta_1 \bar{y}_1, \ldots, \beta_N \bar{y}_N\}$$

where \bar{y}_j is a vector with n_j non-negative components adding up to one and $\beta_j \geq 0$ for each j, $\sum \beta_j = 1$. If I plays

$$\{\bar{x}_1 x^1, \ldots, \bar{x}_M x^M\}$$

then the pay-off

$$\sum_{j=1}^N \left(\sum_{i=1}^M \bar{x}_i x^i B_{ij} \beta_j \bar{y}_j \right) \geq \sum_{j=1}^N \left(\sum_{i=1}^M \bar{x}_i \beta_j \bar{y}_j \right) \geq \bar{v}.$$

Corollary. $\cap_j Y_j^i \neq \Lambda$ for each j implies $v \leq \bar{v}$. If $y_j \in \cap_j Y_j^i$ for each j and $\bar{y} \in \bar{Y}$, then by playing the vector $\{\bar{y}_1 y_1, \ldots, \bar{y}_N y_N\}$ the second player may limit his losses to \bar{v}.

Corollary. $\cap_i X_i^j \neq \Lambda$ for each i and $\cap_j Y_j^i \neq \Lambda$ for each j implies $v = \bar{v}$. $x^i \in \cap_i X_i^j$, $y_j \in \cap_j Y_j^i$, $\bar{x} \in \bar{X}$ and $\bar{y} \in \bar{Y}$ implies $\{x_1 x^1, \ldots, x_M x^M\} \in \bar{X}$ and $\{y_1 y_1, \ldots, y_N y_N\} \in \bar{Y}$.

Bibliography

Institute for Advanced Study

1 Similar results (unpublished) have been obtained by Gale, Kuhn, and Tucker independently of those of the author. An abstract, apparently motivated by consideration of matrices B which have large constant segments, of these results is D. Gale, H. W. Kuhn, and A. W. Tucker, Bull. Amer. Math. Soc. Abstract 55-11-472.