THE RANGE OF CERTAIN VECTOR INTEGRALS

DAVID BLACKWELL

1. Introduction. Let u_1, \ldots, u_n be completely additive set functions defined over a Borel field \mathcal{B} of subsets of a space X, and let A be any bounded subset of Euclidean n-space. With every \mathcal{B}-measurable function $f = \alpha(x) = [a_1(x), \ldots, a_n(x)]$ defined on X with range in A we associate the vector $v(f) = (\int a_1(x) du_1, \ldots, \int a_n(x) du_n)$. Our problem is to investigate the range R of the function $v(f)$.

If A consists of the two points $(0, 0, \ldots, 0)$ and $(1, 1, \ldots, 1)$, the functions f have the form $\phi(x), \ldots, \phi(x)$, where $\phi(x)$ is the characteristic function of a \mathcal{B}-measurable set E, and the range R of $v(f)$ is the range of the vector measure $u_1(E), \ldots, u_n(E)$, $E \in \mathcal{B}$. This case has been treated by Liapounoff who has shown that R is closed and, if $u_1(E), \ldots, u_n(E)$ are nonatomic, convex. A simplified proof of Liapounoff's results has been given by Halmos.

Our results are extensions of those of Liapounoff. We shall show (1) that whenever A is closed, R is closed, and (2) that whenever u_1, \ldots, u_n are nonatomic, R is convex. As will be noted below, result (2) follows directly from the corresponding result of Liapounoff; nevertheless we give an independent proof, as our methods differ in detail, though not in essential idea, from those of Halmos, and the principal tool, Theorem 2, is a curious result of some interest.

We shall sketch here the application of the results to statistical decisions and the theory of games, in the special case where u_1, \ldots, u_n are probability measures. Nature (Player I) chooses an integer $i = 1, \ldots, n$, a point x is then chosen from X according to the distribution u_i, and the statistician (Player II) observes x. He then choose a point $a = (a_1, \ldots, a_n) \in A$ and loses the amount a_i. A strategy for the statistician is a function $f = \alpha(x)$, specifying for each $x \in X$ the point a to be chosen when x is observed, and the vector $v[f]$ is his expected loss vector; its ith coordinate is the statistician's expected loss when Nature chooses i and he uses strategy f. Thus R is the set of loss vectors the statistician can achieve. Now by a mixed strategy, that is, using N strategies f_1, \ldots, f_N with specified probabilities $\lambda_1, \ldots, \lambda_N$, $\lambda_i \geq 0$, $\sum \lambda_i = 1$, the statistician can achieve

Received by the editors May 3, 1950.

as an expected loss vector precisely the points in the convex set determined by \(R \). Thus whenever \(R \) is convex, any vector which can be obtained with a mixed strategy can already be obtained with a pure strategy; mixed strategies are unnecessary. Closure of \(R \) alone seems to have no particular game theory significance, but if \(R \) is convex and closed, it follows from a theorem of Wald\(^3\) that the statistician has a good pure strategy. Our results, then, have the following consequences: if \(u_1, \ldots, u_n \) are nonatomic, mixed strategies are unnecessary; if in addition \(A \) is closed, the statistician has a good pure strategy.\(^4\)

2. Separation of atomic and nonatomic cases. Let \(u \) be any nonnegative measure such that each \(u_i \) is absolutely continuous with respect to \(u \); there are functions \(p_1(x), \ldots, p_n(x) \) such that
\[
\int p_i(x)\,du(x) = u_i(E), \quad i = 1, \ldots, n.
\]
Let \(X = X_1 + X_2 \), where \(u \) is nonatomic on \(X_1 \), that is, every set of positive \(u \)-measure contains a set of every smaller positive measure, and completely atomic on \(X_2 \), that is, \(X_2 = S_1 + S_2 + \cdots \), and every \(\mathcal{B} \)-measurable subset \(S \) of \(S_i \) has \(u(S) = 0 \) or \(u(S) = u(S_i) \).\(^5\) Now the range \(R \) of \(v[f] \) is simply the vector sum of \(R_1, R_2 \), the ranges obtained when \(X, u_1, \ldots, u_n \) are contracted to \(X_1, X_2 \). Thus we need consider only the two cases \(u \) nonatomic, \(u \) completely atomic.

3. Atomic case.

Theorem 1. If \(u \) is atomic and \(A \) is closed, then \(R \) is closed.

Proof. If \(X = S_1 + S_2 + \cdots \) is the decomposition of \(X \) into atoms, every \(\mathcal{B} \)-measurable function is constant almost everywhere over each \(S_i \); we specify the function by the sequence \(\{v_i\} \), where \(v_i \) is its value almost everywhere on \(S_i \). The admissible functions \(f \) are sequences \(\{v_i\} \) of points of \(A \). Then every sequence \(\{f_i\} \) of admissible \(f \)'s has a subsequence converging almost everywhere to a function \(f^* \) (\(A \) is bounded). Since \(A \) is closed, the values of \(f^* \) are in \(A \) so that \(f^* \) is admissible. If \(v(f_i) \to \xi \), then \(v(f^*) = \xi \), so that \(R \) is closed.

4. Nonatomic case: convexity of \(R \).

\(^5\) That such a decomposition exists is well known; see for instance the author's Idempotent Markoff chains, Ann. of Math. vol. 43 (1942) pp. 560–567.
Lemma. If \(u \) is any nonatomic, non-negative measure on a Borel field \(\mathcal{B} \) of subsets of a space \(X \), and \(f(x) \) is any \(u \)-integrable function, there is a set \(S \) with \(u(S) = (1/2)u(X) \), \(\int_S f(x)du = (1/2)f(s) \).

Proof. We merely outline the construction of such a set \(S \); the details are straightforward. Let \(a^* \) be the maximum of all real numbers \(a \) for which \(u\{f \geq a\} \geq (1/2)u(X) \). For every \(a \leq a^* \) there are sets \(S \) with \(u(S) = (1/2)u(X) \) of the form \(U + V + W \), where \(U = \{a < f(x) < b\}, V \) is a subset of \(\{f(x) = a\} \), \(W \) is a subset of \(\{f = b\} \).

Let \(\phi(S) = \int_S f(x)du \). If \(a_1 < a_2 \leq a^* \), for any \(S_1, S_2 \) corresponding to \(a_1, a_2, \phi(S_1) \leq \phi(S_2) \). The minimum value of \(\phi(S) \) occurs with \(a = -\infty \), \(V \) equal to a null set; the maximum value of \(\phi(S) \) occurs at \(a = a^* \), \(b = +\infty \), \(W \) equal to a null set; and \((1/2)\int f(x)du = a \) lies between these two values. For an \(a \) with \(u\{f = a\} = 0 \), there is only one value of \(\phi(S) \), while if \(u\{f = a\} > 0 \), \(\phi(S) \) increases continuously as \(u(V) \) decreases from \(u\{f = a\} \) to 0, except at \(a = a^* \), where \(u(V) \) may have a positive minimum. If \(\psi_1(a) \), \(\psi_2(a) \) are the minimum and maximum values of \(\phi(S) \) for a given \(a \), \(\psi_1, \psi_2 \) are continuous from the left and right respectively. If \(a_0 \) is the maximum \(a \) with \(\psi_1(a) \leq a \), we have, for \(a > a_0 \), \(\psi_2(a) \geq \psi_1(a) > a \), so that, \(\psi_2(a) \) being continuous from the right, \(\psi_2(a_0) \geq a \). Since for \(S \) corresponding to \(a_0 \) we can make \(\phi(S) \) assume any value between \(\psi_1(a_0), \psi_2(a_0) \), there is an \(S \) corresponding to \(a_0 \) with \(\phi(S) = a \).

Theorem 2. If \(u \) is any nonatomic, non-negative measure on a Borel field \(\mathcal{B} \) of subsets of \(X \) and \(f_1, \ldots, f_n \) are any \(\mathcal{B} \)-measurable functions with \(\int f_i du \) finite, \(i = 1, \ldots, n \), there is a Borel field \(\mathcal{A} \subset \mathcal{B} \) such that \(u \) is nonatomic on \(\mathcal{A} \) and for every \(D \in \mathcal{A} \),

\[
\int_D f_i(x)du = u(D) \int f_i(x)du.
\]

Proof. It is no loss of generality to suppose \(u(X) = 1 \) and use the language of probability. The theorem then asserts that \(E_{\mathcal{A}}(f_i) = E(f_i), i = 1, \ldots, n \), where \(E(f), E_{\mathcal{A}}(f) \) denote the expectation and conditional expectation with respect to the Borel field \(\mathcal{A} \) of the chance variable \(f \).

We first prove the theorem for the single chance variable \(f_1 \). Suppose \(E(f_1) = a \). According to the lemma there is a set \(S \), with \(u(S) = (1/2)u(X) \), \(\int_S f_1 du = (1/2)a \). Applying the lemma to the sets \(S = S_1, CS = S_2, f_1 \), we obtain four disjoint sets \(S_{11}, S_{12}, S_{21}, S_{22} \) such that \(S_{11} + S_{12} = S_1, u(S_{11}) = 1/4, \int_{S_{11}} f_1 du = (1/4)a \). Continuing in this way, and denoting the Borel field determined by the \(2^n \) sets obtained at the \(n \)th stage by \(\mathcal{B}_n \), we see that \(\mathcal{B}_1 \subset \mathcal{B}_2 \subset \cdots, E_{\mathcal{B}_n}(f_1) = E(f_1), and
\(B_n \) contains \(2^n \) disjoint sets of measure \((1/2)^n\). If \(\mathcal{A}_1 \) is the smallest Borel field containing \(B_1, B_2, \ldots \), \(u \) is nonatomic on \(\mathcal{A}_1 \) and, according to a theorem of Doob,\(^6\) \(E_{B_n}(f_1) \rightarrow E_{\mathcal{A}_1}(f_1) \). Thus \(E_{\mathcal{A}_1}(f_1) = E(f_1) \).

Now applying the result for a single function to \(E_{\mathcal{A}_1}(f_i) \) with \(B \) replaced by \(\mathcal{A}_1 \), we obtain a Borel field \(\mathcal{A}_2 \subset \mathcal{A}_1 \) on which \(u \) is nonatomic, and on which \(E_{\mathcal{A}_2}[E_{\mathcal{A}_2} f_i] = E_{\mathcal{A}_1}(f_i) \). Thus \(E_{\mathcal{A}_i}(f_i) = E(f_i), i = 1, 2 \).

Continuing in this way, we obtain a decreasing sequence of Borel fields \(\mathcal{A}_1 \supset \mathcal{A}_2 \supset \cdots \supset \mathcal{A}_n \) such that \(\mathcal{A}_n = \mathcal{A} \) has the property asserted in the theorem.

Theorem 3. If \(u \) is nonatomic, \(R \) is convex.

Proof. Suppose \(v[A_1] = A_1, v[A_2] = A_2 \), where \(f_1 = (a_1(x), \ldots, a_n(x)), f_2 = (a_2(x), \ldots, a_n(x)) \). Let \(\mathcal{A} \) be a Borel field such that \(u \) is nonatomic on \(\mathcal{A} \), and \(E_{\mathcal{A}}(a_i) = E(a_i) \) for \(g = a_1 p_1, \ldots, a_n p_n, a_1 p_2, \ldots, a_n p_2 \). Let \(D \) be a set in \(\mathcal{A} \) with \(u(D) = t, 0 \leq t \leq 1 \), and define \(f = f_1 \) on \(D \), \(f_2 \) on \(CD \). Then

\[
E(f) = \left(\int_D a_1 p_1 du + \int_{CD} a_1 p_1 du, \ldots, \int_D a_n p_n du + \int_{CD} a_n p_n du \right)
\]

As remarked above, Theorem 3 is a direct consequence of the theorem of Liapounoff: we consider the \(2n \)-dimensional measure \(w(D) = \int_D a_1 p_1 du, \ldots, \int_D a_n p_n du, \int_D a_1 p_2 du, \ldots, \int_D a_n p_2 du \). We have \(w(X) = (r_1, r_2) \), so that for any \(t, 0 \leq t \leq 1 \), by Liapounoff’s theorem, there is a \(D \) with \(w(D) = (tr_1, tr_2) \). Then \(w(CD) = [(1-t)r_1, (1-t)r_2] \) and, defining \(f = f_1 \) on \(D \), \(f = f_2 \) on \(CD \), we obtain \(v(f) = tr_1 + (1-t)r_2 \).

5. **Nonatomic case, \(A \) closed: closure of \(R \).**

Theorem 4. Suppose \(A \) is closed, and let \(L_1, \ldots, L_k \) be any linear functions on \(n \)-dimensional space. Let \(\mathcal{R} \) be the closure of \(R \); define \(\lambda_i = \min_{r \in \mathcal{R}} L_i(r) \), \(S_i = \mathcal{R} \{ L_i(r) = \lambda_i \} \), and, inductively for \(1 < i \leq k \), \(\lambda_i = \min_{r \in \mathcal{R}} L_i(r) \), \(S_i = S_{i-1} \{ L_i(r) = \lambda_i \} \). Then there is a point \(r \in \mathcal{R} \) with \(L_i(r) = \lambda_i, i = 1, \ldots, k \).

Proof. We may suppose, choosing additional \(L_i \) if necessary, that there are \(n \) linearly independent linear functions among the \(L_i \). Let \(r^* \) be the point such that \(L_i(r^*) = \lambda_i, i = 1, \ldots, k \). Then \(r^* \in \mathcal{R} \). Let \(\{ r_j \} \) be a sequence of points in \(\mathcal{R} \) with \(r_j \rightarrow r^* \); say \(r_j = v(f_j), f_j = [a_{ij}(x)], \)

\(^6\) Regularity properties of certain families of chance variables, Trans. Amer. Math. Soc. vol. 47 (1940) p. 460, Theorem 1.3.
\[\ldots , a_{n_j}(x) \]. Define \(\phi_{ij}(x) = L_i \left[a_{ij}(x) p_1(x), \ldots, a_{nj}(x) p_n(x) \right] \). Then \(\int \phi_{ij}(x) \, du \rightarrow \lambda_i \) as \(j \rightarrow \infty \). We shall show that there is a subsequence \(j_i \) such that \(\phi_{ij_i}(x) \rightarrow \phi(x) \) as \(t \rightarrow \infty \) except on an \(\varepsilon \)-set of \(\mu \)-measure zero.

Define
\[
\phi_N(x) = \min \left[\phi_{11}(x), \ldots, \phi_{1N}(x) \right],
\]
\[
S_{kn} = \{ \phi_{ij} > \phi_N \text{ for } j < k, \phi_{ik} = \phi_N \},
\]
\[
f_N^* = f_{k} \text{ on } S_{kn}.
\]

Then \(L_i(f_N^*) = \int \phi_N(x) \, du \). Now \(\phi_N(x) \leq \phi_{1N}(x) \), so that \(L_i(f_{k\infty}^*) \leq L_i(f_N^*) \), \(L_i(f_{k\infty}^*) \rightarrow \lambda_i \). Let \(\phi(x) = \lim \phi_N(x) \), \(N \rightarrow \infty \). Then \(\phi_{1N} \geq \phi \) for all \(x \) and \(\int \phi_{1N} \, du \rightarrow \int \phi \, du \). Consequently \(\phi_{1N} \rightarrow \phi \) in \(u \)-measure, and there is a subsequence of \(\phi_{1N} \rightarrow \phi \) almost everywhere. Suppose we have found a subsequence of \(j \) for which \(\phi_{ij} \) converges almost everywhere to a function \(\phi_i(x) \) for \(1 \leq i < m \). To simplify notation, suppose the original sequence \(\phi_{ij} \) has this property. If \(\phi_{mj} \) does not converge in \(\mu \)-measure, there is an \(\varepsilon > 0 \) and a sequence of integers \(s_1, t_1, s_2, t_2, \ldots, s_j, t_j \) becoming infinite with \(j \), for which the set \(T_j = \{ \phi_{mj} = \phi_{mt} \} \) has \(u(T_j) > \varepsilon \). Define \(g_j = f_{mj} \) on \(T_j \), \(g_j = f_{mt} \) on \(C(T_j) \). Then \(L_i(g_j) \rightarrow \lambda_i \) for \(i < m \), and \(L_m(g_j) \leq L_m(f_{sj}) - \varepsilon^2 \), so that \(\lim \sup L_m(g_j) \leq \lambda_m - \varepsilon^2 \). Since \(v_j = v(g_j) \subset R \), there is a subsequence of \(v_j \) approaching \(v_0 \subset R \). We have \(L_i(v_0) = \lambda_i \) for \(i < m \), \(L_m(v_0) \leq \lambda_m - \varepsilon^2 \), contradicting the definition of \(\lambda_m \). Hence \(\phi_{mj} \) converges in \(\mu \)-measure to a limiting function \(\phi_m(x) \) and there is a subsequence converging almost everywhere to \(\phi_m(x) \). This completes the induction.

We may now suppose, replacing \(f \) by an appropriate subsequence, that \(\phi_{ij}(x) \rightarrow \phi_i(x) \) almost everywhere as \(j \rightarrow \infty \) for \(i = 1, \ldots, k \); that is, \(L_i \left[a_{ij} p_1, \ldots, a_{nj} p_n \right] \rightarrow \phi_i(x) \), \(i = 1, \ldots, k \). Since \(L_1, \ldots, L_k \) contain \(n \) linearly independent functions, the sequence of points \(\{ (a_{ij}, a_{1j} p_1, \ldots, a_{nj} p_n) \} \) converges almost everywhere to a limiting point \(w(x) = (w_1(x), \ldots, w_n(x)) \). If \(p_1, \ldots, p_n \) never vanish, this implies \(a_{ij}(x) \) converges to a limiting function \(a^*(x) \) almost everywhere; since \(A \) is closed, the values of \(a^*(x) \) are in \(A \), \(f = a^*(x) \) is an admissible function, and \(L_i(f) = \lim L_i(f_j) = \lambda_i, i = 1, \ldots, n \), and the proof is complete. If \(p_1, \ldots, p_n \) sometimes vanish, we make the following modification. We need only find an \(a^*(x) = (a_1^*(x), \ldots, a_n^*(x)) \) such that the \(t \)th component \(a_{ij}^*(x) \) of \(a_{ij}(x) \) converges to \(a_t^*(x) \) for all \(x \) with \(p_t(x) \neq 0 \); the values of \(a_t^*(x) \) on \(\{ p_t = 0 \} \) do not influence \(v[a^*] \). For any subset \(\alpha = (i_1, \ldots, i_\ell) \) of \((1, \ldots, n) \), let \(U_\alpha \) be the \(\varepsilon \)-set where \(p_t \neq 0 \) for \(t \in \alpha, p_t = 0 \) for \(t \notin \alpha \). Let \(h_\alpha \) be a Baire func-

\footnote{For brevity we write \(L_i(f) \) for \(L_i[v(f)] \).}
tion mapping c-dimensional space into n-dimensional space in such a way that every point (x_1, \cdots, x_c) in the projection of A on the c-dimensional subspace (a_{1i}, \cdots, a_{ci}), that is, every point (x_1, \cdots, x_c) for which there is a point $a = (a_1, \cdots, a_n) \in A$ with $a_{1i} = x_1, \cdots, a_{ci} = x_c$, has $h_a(x_1, \cdots, x_c) = a^* = (a_{1i}^*, \cdots, a_{ci}^*) \in A$, with $a_{1i}^* = x_1, \cdots, a_{ci}^* = x_c$. On U_a, $a_{ij}(x)$ converges for $t \in (a)$, say to $a_{ij}^*(x)$. Then $a^*(x) = h_a[a_{1i}^*(x), \cdots, a_{ci}^*(x)]$ on U_a is the required function.

Theorem 5. If u is nonatomic and A is closed, then R is closed.

Proof. According to Theorem 3, R is convex. With the property of R proved in Theorem 4, its closure follows from the following fact about convex sets.

Lemma. Let B be any closed bounded convex set, and let D be any convex set with the property (*): For any linear functions L_1, \cdots, L_k, if we define $\lambda_1 = \min_{x \in B} L_1(x)$, $B_1 = B\{L_1(x) = \lambda_1\}$ and, inductively for $1 < i \leq k$, $\lambda_i = \min_{x \in B_{i-1}} L_i(x)$, $B_i = B_{i-1}\{L_i(x) = \lambda_i\}$, there is a point $d \in BD$ with $L_i(d) = \lambda_i$, $i = 1, \cdots, k$. Then D contains B.

This is easily established by induction on the dimension of B. If B is one-dimensional, that is, a closed interval, D must contain the end points of B so that $D \supset B$. Suppose the lemma established for sets B of dimension less than s, and let B be s-dimensional. The intersection B_1 of B with any supporting hyperplane $L_1(x) = \lambda_1$, where $\lambda_1 = \min_{x \in B} L_1(x)$, is a closed convex set of dimension less than s and has the property (*) relative to D. By the induction hypothesis, $D \supset B_1$. Thus D contains the intersection of B with every supporting hyperplane, so that $D \supset B$.

Theorem 6. If A is closed, R is closed.

Proof. This follows from Theorems 1 and 5, by splitting u into atomic and nonatomic parts with ranges R_1, R_2 and noting that R is the vector sum of the closed sets R_1, R_2.

Howard University

8 Such a Baire function may be constructed as follows: To simplify notation, say $a = (1, \cdots, c)$. Let A_d be the projection of A on its first d coordinates, $c \leq d \leq n$. Then each A_d is closed and is the projection of A_{d+1} on its first d coordinates. If we can construct a Baire function h_d mapping d-space into $(d+1)$-space with the required property, where A is replaced by A_{d+1}, the Baire function $h_{n-1}[h_{n-2}[\cdots [h_d(x_1, \cdots, x_c) \cdots]]$ is the required function. Thus we may suppose $c = n-1$. The function $\psi(x_1, \cdots, x_{n-1}) = \min_{(a_1, \cdots, a_{n-1}, \psi) \in A_n}$ on A_{n-1}, and 0 elsewhere, is lower semi-continuous on the closed set A_{n-1} and so is a Baire function, and the function $h(x_1, \cdots, x_{n-1}) = [x_1, \cdots, x_{n-1}, \psi(x_1, \cdots, x_{n-1})]$ is the required function.