ON THE CONTINUITY OF PARAMETRIC LINEAR OPERATIONS

B. J. PETTIS

The proofs of the theorems asserting strong continuity for semi-groups of linear operations in Banach spaces usually involve measurability and integrability of Banach-space-valued functions [2, pp. 183–184]. A theorem of this type in which the assumptions and the proof are purely topological is given below.

Let G be both a topological space and an additive group, and let \mathcal{H} be a subset of G. For each h in \mathcal{H} let $D(h)$ be all points g in \mathcal{H} satisfying these two conditions: (1) $h - g \in \mathcal{H}$, (2) for each open set N_g about g there is an open set N_h about h such that $h - g + (H \cap N_h) \supset H \cap N_h$. Letting X be a complex linear normed space, a set $\Gamma = \{\gamma\}$ of bounded complex linear functionals on X is a total set for \mathcal{E}, \mathcal{E} a subset of X, if $\|x\| = \sup \{ |\gamma(x)|, \gamma \in \Gamma \}$ holds for every x in the smallest linear subspace containing E. A function T_h on H to the

1 This paper was written under Contract N7-onr-434, Task Order III, Navy Department (The Office of Naval Research).

2 Numbers in brackets refer to the references at the end of the paper.
space $B(X)$ of bounded linear operations on X to X is additive if $T_{h+k} = T_h(T_k)$ whenever h, k, and $h+k$ are in H. Finally, we define a function $\phi(a)$ on a topological space A to a metric space B to be residually separably-valued if the set $\{\phi(a) \mid a \in A'\}$ is separable in B for some set A' residual in A, that is, for some A' having its complement of the first category.

Theorem. Let H be a subset of G and let T_h be additive on H to $B(X)$. Suppose that (i) $D(h)$ is second category for each $h \in H$, and that (ii) for each x_0 in X the function $\phi(h) = T_h(x_0)$ on H to X is residually separably-valued and there is a total set $\Gamma(x_0)$ for $\phi(H)$ such that $\gamma(\phi(h))$ is continuous on H to complex numbers for each $\gamma \in \Gamma(x_0)$. Then $\phi(h)$ is continuous on H to X for each $x_0 \in X$.

Fixing x_0 in X, the idea of the proof is to show, using (ii), that the set C of points of continuity of ϕ is residual, and then to apply (i) to show that $C = H$.

The proof that C is residual is due to Alexiewicz and Orlicz [1, pp. 107–108 and 114–115] in a slightly more restricted case. Their arguments can be adapted here as follows. We first observe that if S is any closed sphere in X with center y in $\phi(H)$ and radius r, then $\phi^{-1}(S)$ is closed in H; for since $\Gamma(x_0)$ is a total set for $\phi(H)$ and $\gamma(\phi(h))$ is continuous for $\gamma \in \Gamma(x_0)$, clearly $\phi^{-1}(S) = H \{ h \mid \gamma(\phi(h)) - y \leq r \}$, a closed set. To establish that C is residual it is enough to prove this: if ϕ is any function on a topological space H to a metric space X and ϕ is residually separably-valued and $\phi^{-1}(S)$ is closed whenever S is a closed sphere with center in $\phi(H)$, then ϕ has its points of continuity forming a residual set C. Let R be a residual set such that $\phi(R)$ is separable in X. Since $\phi(R)$ is separable, there exist countably many closed spheres S_n with centers in $\phi(R)$ such that for any open set V in X we have $V \cap \phi(R) = \bigcup S_n \cap \phi(R)$, where n ranges over all n such that $S_n \subset V$. Let R' be the complement of R in H and set $P_V = R' \cap \phi^{-1}(V)$. Then $\phi^{-1}(V) = P_V \cup \{ R \cap \phi^{-1}(V) \} \subset P_V \cup \phi^{-1}(\Gamma(\phi(R))) \subset P_V \cup (\cup S_n) \subset \phi^{-1}(V)$, where $\gamma \in \Gamma(x_0)$, and in particular $P_V \cap \phi^{-1}(S_n) \subset \phi^{-1}(V)$, where E^0 denotes the interior of any set E. Now set $Q = R' \cap (\cup S_n \cap \phi(R))$. Since R is residual and each S_n is closed, Q is a first category set. Moreover, clearly $\phi^{-1}(V) \subset P_V \cup (\cup S_n) \subset Q \cup \phi^{-1}(V)$. Now in H consider any point g not in Q and any open V containing $\phi(g)$; since $g \in \phi^{-1}(V) \subset Q \cup \phi^{-1}(V)$, and $g \in Q$, obviously $g \in \phi^{-1}(V)$ and hence ϕ is continuous at g. Thus C is residual.
Let \(h \) be fixed in \(H \). Since \(D(h) \) is second category there exists a point \(g \) in \(D(h) \) at which \(\phi \) is continuous. Set \(\rho = \| T_{h-g} \| \) and let \(\epsilon > 0 \) be given. Having \(\phi \) continuous at \(g \), there is an open set \(N_g \) about \(g \) such that \(\| \phi(k) - \phi(g) \| < \epsilon / \rho \) whenever \(k \in H \cap N_g \). Then, since \(g \in D(H) \), there is an open set \(N_h \) about \(h \) such that \(h - g + (H \cap N_g) \supset H \cap N_h \). Consider any \(h' \) in \(H \cap N_h \). Writing \(h' = h - g + k \) where \(k \in H \cap N_g \), we have
\[
\| \phi(h') - \phi(h) \| = \| \phi(h - g + k) - \phi(h - g + g) \| = \| T_{h-g}(T_k(x_0)) - T_{h-g}(T_k(x_0)) \| \leq \rho \| \phi(k) - \phi(g) \| < \epsilon,
\]
showing that \(\phi \) is continuous at \(h \) and ending the proof.

It is easy to verify that assumption (i) in the theorem is satisfied when (i') the group sum \(h + k \) in \(G \) is continuous in \(k \) and for each \(h \) in \(H \) the set \(H \cap (H + H) \) is in the interior of \(H \) and is second category. Statement (i') in turn is implied by this; (i'') \(h + k \) is continuous in each variable in \(G \), \(G \) is second category, \(H \) and \(-H \) are open, and \(H \subset H + H \). Condition (i'') holds, for example, when \(G \) is a second category linear topological space and \(H \) is an open convex set having the zero element as a limit point. Assumption (ii) of the theorem follows if \(H \) contains a countable dense subset and \(\gamma(T_h(x_0)) \) is continuous on \(H \) to complex numbers for each \(x_0 \) in \(X \) and each bounded linear functional \(\gamma \) on \(X \). In particular, Theorem 9.2.2 of [2] now results.

References

Tulane University and Princeton University