ADDENDUM: DERIVATIVES OF INFINITE ORDER

R. P. BOAS, JR., AND K. CHANDRASEKHARAN

We gave an incomplete proof that, if \(f(x) \) belongs to a quasi-analytic class \(C[M_n] \) in \(a < x < b \) and if \(f^{(n)}(x_0) \to L \) for one \(x_0 \) in \((a, b) \), then \(f(x) \) is analytic in \((a, b) \) (and consequently \(f^{(n)}(x) \to Le^{-\alpha n} \) in \(a < x < b \)); the proof was completed by S. Mandelbrojt.\(^2\) We now wish to point out that in fact T. Bang\(^3\) had already shown that if \(f(x) \) belongs to a quasi-analytic class on \(a < x < b \) and \(g(x) \) is analytic, then \(f^{(n)}(x_0) = g^{(n)}(x_0) \) for all \(n \) and \(a < x_0 < b \) implies \(f(x) \equiv g(x) \), which is precisely the result which we needed for our proof.

Bang has also pointed out to us that a function constructed in his thesis\(^4\) answers a question raised by us.\(^5\) We asked whether it is possible to have \(\lim_{n \to \infty} f^{(n)}(x)/\lambda_n = g(x), \) \(a \leq x \leq b, \) with \(\lim \inf \left| \frac{\lambda_{n-1}}{\lambda_n} \right| = 0, \) and \(g(x) \neq 0 \) in \(a < x < b. \) Bang constructed a function \(f(x) \) analytic except for \(x = 0, \) with \(f^{(n)}(0) \) tending to \(\infty \) arbitrarily rapidly; if we take \(\lambda_n = \left| f^{(n)}(0) \right|, \) we have \(g(x) = 0 \) for \(x \neq 0, g(0) = 1. \)

Brown University and
Institute for Advanced Study

Received by the editors June 25, 1950.

\(^3\) T. Bang, Om quasi-analytiske Funktioner, Copenhagen thesis, 1946, p. 84.
\(^4\) Bang, loc. cit.
\(^5\) Boas and Chandrasekharan, op. cit., p. 525.