SOME THEOREMS ON MEROMORPHIC FUNCTIONS

S. M. SHAH

1. Introduction. In a recent paper [1] Yoshitomo Okada proved the following two theorems.

Theorem A. If for any meromorphic function

\[F(z) = f(z)/g(z), \]

where \(f \) and \(g \) are canonical products of genera \(p, q \) and of orders \(p_1, p_2 \) respectively,

\[\max (p_1, p_2) = \max (p, q), \]

then

\[\liminf_{r \to \infty} \frac{1}{r N(r) \phi(r)} \int_0^r \log^+ M(t, F) dt = 0, \]

where \(N(r) = n(r, f) + n(r, g) \) and \(\phi(x) \) is any positive continuous non-decreasing function of a real variable \(x \) such that \(\int_0^\infty dx/x \phi(x) \) is convergent.

Theorem B. If (1) is a function of order \(\rho \), where \(\rho > 0 \) is not an integer, then

\[\liminf_{r \to \infty} \frac{1}{r N(r)} \int_0^r \log^+ M(t, F) dt < \infty. \]

In this paper we extend Theorems A and B. Let

\[F(z) = z^k \exp (H(z)) f(z)/g(z) \]

be any meromorphic function of finite order \(\rho \). Here \(H(z) \) is a polynomial of degree \(h \); \(f(z) \) and \(g(z) \) are canonical products of orders \(p_1, p_2 \) and genera \(p, q \) respectively. The genus of \(F(z) \) is \(P = \max (p, q, h) \) and we have \(\rho - 1 \leq P \leq \rho \). Let \(n(r, 0) \) and \(n(r, \infty) \) denote the number of zeros and poles respectively of \(F(z) \) in \(|z| \leq r \) and write \(\psi(r) = n(r, f) + n(r, g) \),

\[I(r, F) = I(r) = \frac{1}{r} \int_0^r \log^+ M(t, F) dt. \]

Theorem 1. If for any meromorphic function (5) of order \(\rho \) where

1 Numbers in brackets refer to the references at the end of the paper.
\(p > 0 \) is an integer,

\[h \leq \max (p, q) = s \text{ (say)}, \]

then

\[\liminf_{r \to \infty} \frac{I(r, F)}{n(r, 0) + n(r, \infty)} \phi(r) = 0, \]

where \(\phi(x) \) has been defined in the statement of Theorem A.

Theorem 2. For any meromorphic function (5) of order \(p \) where \(p > 0 \) is not an integer, we have

\[\liminf_{r \to \infty} \frac{I(r, F)}{n(r, 0) + n(r, \infty)} < \infty. \]

Theorem 3. If the meromorphic function (5) be nonconstant and of zero order, then

\[\liminf_{r \to \infty} \frac{I(r, F)}{N(r, 0) + N(r, \infty)} < \infty, \]

where \(N(r, a) \) denotes as usual

\[\int_0^r \frac{n(x, a) - n(0, a)}{x} \, dx + n(0, a) \log r. \]

Corollary.

\[\liminf_{r \to \infty} \frac{I(r, F)}{n(r, 0) + n(r, \infty)} \log r < \infty. \]

2. **Examples.** If \(k > \max (p, q) \), then (7) does not hold. For instance, if

\[F(z) = e^z \prod_{\nu=1}^{\infty} \left(1 + \frac{z}{n(\log n)^a} \right)^{\alpha}, \quad \alpha > 1, \]

then \(k = 1, \max (p, q) = 0, \) and

\[\frac{I(r)}{n(r, 0) + n(r, \infty)} \log r \log r \to \infty, \]

as \(r \to \infty \). Further let \(\alpha(x) \) be any given function tending to infinity, however slowly, with \(x \) and consider

\[F(z) = \prod_{\nu} E \left(\frac{z}{\alpha_{\nu}}, p \right), \]

where
\[\alpha_s = -\left\{ \nu(\log \nu)^m \right\}^{1/s}, \quad \rho < \rho < \beta + 1; \]

then \(F(z) \) is an entire function of nonintegral order \(\rho > 0 \) and we have [5, p. 44]

\[\lim_{r \to \infty} \frac{I(r, F)\alpha(r)}{\{n(r, 0) + n(r, \infty)\}} = \infty. \]

Further \(F(z) = \prod_{n=1}^{\infty} \left(1 - z/e^n \right) \) is an entire function of zero order for which

\[\lim_{r \to \infty} \frac{I(r, F)\alpha(r)}{\{n(r, 0) + n(r, \infty)\}} = \infty; \]

\[\lim_{r \to \infty} \frac{I(r, F)}{\{n(r, 0) + n(r, \infty)\} \log r} = \frac{1}{2}. \]

3. Lemma. Let

\[J(r, \beta) = \int_0^\infty \frac{r^{\beta+1} \psi(t) dt}{t^{\beta+1}(t + r)}. \]

If \(s \geq h \) and \(\psi(t) \geq 1 \) for all large \(t \), then\(^2\)

\[I(r, F) < HJ(r, s). \]

Proof. Let \((a_n)_1^\infty \) denote the zeros of \(f(z) \) and \((b_n)_1^\infty \) the zeros of \(g(z) \) and let \(k > 1 \). Then

\[T(r, F) < T(r, f) + T(r, g) + \alpha(r^k + \log r). \]

\[I(r, F) < HT(kr, F) < H \{ T(kr, f) + T(kr, g) \} + \alpha(r^k + \log r) \]

\[< H \{ \log^+ M(kr, f) + \log^+ M(kr, g) \} + \alpha(r^k + \log r) \]

\[< H \left\{ \sum_{n=1}^{\infty} \frac{r^{\beta+1} \psi(t) dt}{t^{\beta+1}(t + r)} + \sum_{n=1}^{\infty} \frac{r^{\beta+1} \psi(t) dt}{t^{\beta+1}(t + r)} \right\} \]

\[+ \log^+ M(kr, f) + \log^+ M(kr, g) \]

\[< H \int_0^\infty \frac{r^{\beta+1} \psi(t) dt}{t^{\beta+1}(t + r)} + \alpha(r^k + \log r). \]

Now

\[J(r, s) > \frac{1}{2} \int_0^r \frac{r^s \psi(t) dt}{t^{s+1}} > h_1 r^s. \]

Hence if \(s > 0 \), \(I(r) < HJ(r, s) \). If \(s = 0 \) then \(h = 0 \) and since \(\psi(t) \geq 1 \) for all large \(t \),

\(^1 H(h) \) denotes a positive constant not necessarily the same at each occurrence.
\[\int_0^r \frac{\psi(t)}{t} \, dt > h_1 \log r, \]
which proves the lemma.

4. **Proof of Theorem 1.** We note that \(\psi(r) \geq 1 \) for all large \(r \), for if \(\psi(r) = 0 \) for all \(r \), then \(s = 0 \) and hence, by (6), \(h = 0 \) and \(F(z) \) would then not be a function of order greater than or equal to one.

Consider \(G(z) = \prod_{n=1}^s E(z/c_n, s) \), where the sequence \(c_1, c_2, \ldots \) is composed of \(a_1, a_2, \ldots \); \(b_1, b_2, \ldots \) and \(|c_1| \leq |c_2| \leq \ldots \). Since \(h \leq s \), \(G(z) \) is an entire function of order \(p \) and genus \(s = \max (p, q) \). Further \(s = p \) or \(p - 1 \) and hence we have \([2, \text{pp. 23–29}; 3, \text{pp. 180–186}]\)

\[\lim_{r \to \infty} \frac{J(r, s)}{\psi(r)\phi(r)} = 0. \]

Since

\[\psi(r) \leq n(r, 0) + n(r, \infty), \]

(7) follows from the lemma.

5. **Proof of Theorem 2.** This theorem follows from the argument of Okada \([1, \text{p. 249}]\). We sketch an alternative proof. Let \([p] = P \). Then \(h \leq P = s \). Let \(0 < \epsilon < \min \{ p-s, s+1-p \} \). From the lemma we have

\[I(r, F) < H \left\{ \int_0^r \frac{r^s \psi(t) \, dt}{t^{s+1}} + r^{s+1} \int_r^\infty \frac{\psi(t) \, dt}{t^{s+2}} \right\}. \]

From Lemma 3 \([3, \text{p. 184}]\) we have

\[\frac{\psi(t)}{t^{p-s}} \leq \frac{\psi(r_n)}{r_n^{p-s}}, \quad 0 \leq t \leq r_n; \quad \frac{\psi(t)}{t^{p-s}} \leq \frac{\psi(r_n)}{r_n^{p-s}}, \quad t \geq r_n, \]

for a sequence \((r_n)_1^\infty, r_n \uparrow \infty \). Hence the theorem follows.

6. **Proof of Theorem 3.** If \(\psi(t) = 0 \) for all \(t \) then \(F(z) \) would be of the form \(Az^k \) and (9) and (10) obviously hold. Hence we may suppose that \(\psi(t) \geq 1 \) for all large \(t \). Let

\[\psi_1(t) = \int_t^r \frac{\psi(t)}{t} \, dt. \]

Then

\[I(r) < H \left[\int_0^r \frac{\psi(t)}{t} \, dt + r \int_r^\infty \frac{\psi(t)}{t^2} \, dt \right] = Hr \int_r^\infty \frac{\psi_1(t)}{t^2} \, dt. \]
Now
\[
\lim_{r \to \infty} \frac{\psi_1(r)}{r^*} = 0.
\]
Hence there exists a sequence \(\{r_n\}_{n=1}^{\infty}, r_n \uparrow \infty \), such that
\[
\frac{\psi_1(r)}{r^*} \leq \frac{\psi_1(r_n)}{r_n^*} \quad \text{for } r \geq r_n;
\]
and the theorem follows. The corollary follows directly from the theorem.

References

Aligarh University