SELF-ADJOINT FACTORIZATIONS OF DIFFERENTIAL OPERATORS

KENNETH S. MILLER

In this short paper we prove the following result:

Theorem. Let L be an ordinary linear differential operator

$$L = p_0(x) \frac{d^n}{dx^n} + p_1(x) \frac{d^{n-1}}{dx^{n-1}} + \cdots + p_n(x).$$

of even order $n = 2r$. $p_i(x) \in C^{n-i}$ and $p_0(x) > 0$ in some closed finite interval $[a, b]$. Then there exists a subinterval of $[a, b]$ in which L has a factorization

$$L = f(x) P_1 P_2 \cdots P_r,$$

where each P_a is of the second order and formally self-adjoint.

The theorem follows by complete induction after the proofs of Lemmas 1 and 2 below. We use the following notation: If M is a linear differential operator, then its formal or Lagrange adjoint will be denoted by $M^+.$

Lemma 1. Let

$$N = \frac{d^n}{dx^n} + q_1(x) \frac{d^{n-1}}{dx^{n-1}} + \cdots + q_n(x).$$

be a linear differential operator with $q_i(x) \in C^0$ in some closed finite interval $[a, b].$ Then there is a subinterval $[a', b']$ of $[a, b]$ in which N has the representation

$$N = PM$$

where $P = P^+$ is of second order.

Proof. Let $\{\phi_1(x), \phi_2(x), \cdots, \phi_n(x)\}$ be n linearly independent solutions of $Nu = 0$ with Wronskian $W(x).$ There exist $n - 2$ functions among the $\phi_1, \phi_2, \cdots, \phi_n$ whose Wronskian $\omega(x)$ is not identically zero in some subinterval of $[a, b].$ Let these $n - 2$ functions be $\phi_1(x), \phi_2(x), \cdots, \phi_{n-2}(x)$ and let $\omega(x)$ be unequal to zero in $[a', b'].$

Define the operator M by the equation:

Presented to the Society, December 29, 1950; received by the editors October 30, 1950.

704
FACTORIZATION OF DIFFERENTIAL OPERATORS

\[M u = \frac{+1}{W(x)} \begin{vmatrix} \phi_1(x) & \phi_2(x) & \cdots & \phi_{n-2}(x) & u \\ \phi_1'(x) & \phi_2'(x) & \cdots & \phi_{n-2}'(x) & u' \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \phi_1^{(n-2)}(x) & \phi_2^{(n-2)}(x) & \cdots & \phi_{n-2}^{(n-2)}(x) & u^{(n-2)} \end{vmatrix} = s_2(x)u^{(n-2)} + s_3(x)u^{(n-3)} + \cdots + s_n(x)u. \]

Let

\[P = a(x) \frac{d^2}{dx^2} + b(x) \frac{d}{dx} + c(x). \]

be so chosen that \(PM = N \). Now

\[PMu = as_2u^{(n)} + \left[a(2s_2' + ss) + bs_2 \right] u^{(n-1)} + \cdots, \]
\[Nu = u^{(n)} + q_1u^{(n-1)} + \cdots. \]

Comparing coefficients and noting that \((Ws_2)' + (Ws_3) = 0 \), we see that \(a'(x) = b(x) \) and hence that \(P = P^+ \).

Lemma 2. Let

\[L = \sum_{i=0}^{n} p_i(x) \frac{d^i}{dx^i} \]

be a linear differential operator with \(p_i(x) \in C^{n-i} \), \(p_0(x) > 0 \) in some closed finite interval \([a, b]\). Then there is a subinterval \([a', b']\) of \([a, b]\) such that \(L \) has a representation

\[L = SQ \]

where \(Q = Q^+ \) is of second order.

Proof. Let \(N = (1/p_0(x))L \). Then \(N \) is a linear differential operator with leading coefficient 1. Hence \(N^+ \) has leading coefficient 1. By Lemma 1, there exists a subinterval of \([a, b]\) such that

\[N^+ = QR \]

with \(Q = Q^+ \). Taking adjoints of the above equation:

\[N = R^+Q^+ = R^+Q. \]

Now

\[L = p_0(x)N = p_0(x)R^+Q. \]

Let \(p_0(x)R^+ = S \). Then \(L = SQ \).

New York University