SELF-ADJOINT FACTORIZATIONS OF
DIFFERENTIAL OPERATORS

KENNETH S. MILLER

In this short paper we prove the following result:

Theorem. Let \(L \) be an ordinary linear differential operator

\[
L = p_0(x) \frac{d^n}{dx^n} + p_1(x) \frac{d^{n-1}}{dx^{n-1}} + \cdots + p_n(x)\cdot
\]

of even order \(n = 2r \). \(p_i(x) \in C^{n-i} \) and \(p_0(x) > 0 \) in some closed finite interval \([a, b]\). Then there exists a subinterval of \([a, b]\) in which \(L \) has a factorization

\[
L = f(x) P_1 P_2 \cdots P_r,
\]

where each \(P_a \) is of the second order and formally self-adjoint.

The theorem follows by complete induction after the proofs of Lemmas 1 and 2 below. We use the following notation: If \(M \) is a linear differential operator, then its formal or Lagrange adjoint will be denoted by \(M^+ \).

Lemma 1. Let

\[
N = \frac{d^n}{dx^n} + q_1(x) \frac{d^{n-1}}{dx^{n-1}} + \cdots + q_n(x)\cdot
\]

be a linear differential operator with \(q_i(x) \in C^0 \) in some closed finite interval \([a, b]\). Then there is a subinterval \([a', b']\) of \([a, b]\) in which \(N \) has the representation

\[
N = PM
\]

where \(P = P^+ \) is of second order.

Proof. Let \(\{\phi_1(x), \phi_2(x), \cdots, \phi_n(x)\} \) be \(n \) linearly independent solutions of \(Nu = 0 \) with Wronskian \(W(x) \). There exist \(n - 2 \) functions among the \(\phi_1, \phi_2, \cdots, \phi_n \) whose Wronskian \(\omega(x) \) is not identically zero in some subinterval of \([a, b]\). Let these \(n - 2 \) functions be \(\phi_1(x), \phi_2(x), \cdots, \phi_{n-2}(x) \) and let \(\omega(x) \) be unequal to zero in \([a', b']\).

Define the operator \(M \) by the equation:

Presented to the Society, December 29, 1950; received by the editors October 30, 1950.

704
\[M u = \begin{bmatrix} +1 & \phi_1(x) & \phi_2(x) & \cdots & \phi_{n-2}(x) & u \\ W(x) & \phi_1'(x) & \phi_2'(x) & \cdots & \phi_{n-2}'(x) & u' \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \phi_1^{(n-2)}(x) & \phi_2^{(n-2)}(x) & \cdots & \phi_{n-2}^{(n-2)}(x) & u^{(n-2)} \end{bmatrix} \]

\[= s_2(x)u^{(n-2)} + s_3(x)u^{(n-3)} + \cdots + s_n(x)u. \]

Let

\[P = a(x) \frac{d^2}{dx^2} + b(x) \frac{d}{dx} + c(x). \]

be so chosen that \(PM = N. \) Now

\[PMu = as_2u^{(n)} + [a(2s_2' + ss) + bs_2]u^{(n-1)} + \cdots, \]

\[Nu = u^{(n)} + q_1u^{(n-1)} + \cdots. \]

Comparing coefficients and noting that \((Ws_2)' + (W_{s_3}) = 0,\) we see that \(a'(x) = b(x)\) and hence that \(P = P^+. \)

Lemma 2. Let

\[L = \frac{d^n}{dx^n} + p_1(x) \frac{d^{n-1}}{dx^{n-1}} + \cdots + p_n(x). \]

be a linear differential operator with \(p_i(x) \in C^{n-i}, \) \(p_0(x) > 0 \) in some closed finite interval \([a, b].\) Then there is subinterval \([a', b']\) of \([a, b]\) such that \(L \) has a representation

\[L = SQ \]

where \(Q = Q^+ \) is of second order.

Proof. Let \(N = (1/p_0(x))L. \) Then \(N \) is a linear differential operator with leading coefficient 1. Hence \(N^+ \) has leading coefficient 1. By Lemma 1, there exists a subinterval of \([a, b]\) such that

\[N^+ = QR \]

with \(Q = Q^+. \) Taking adjoints of the above equation:

\[N = R^+Q^+ = R^+Q. \]

Now

\[L = \frac{d^n}{dx^n} = p_0(x)R^+Q. \]

Let \(p_0(x)R^+ = S. \) Then \(L = SQ. \)

New York University