DETERMINATION OF THE EXTREME VALUES OF THE SPECTRUM OF A BOUNDED SELF-ADJOINT OPERATOR

WILLIAM KARUSH

1. Introduction. Let A be a bounded self-adjoint operator on a Hilbert space \mathcal{H} with spectral family of projections $F(\lambda)$. Let λ'_1 be the supremum of the spectrum $\mathcal{S}(A)$ of A. We consider an iterative procedure for the determination of λ'_1 and, in case λ'_1 is a characteristic number, for the determination of a characteristic vector belonging to λ'_1. The procedure involves the solution of a characteristic value problem of finite dimension at each step of the iteration, this dimension being the same for each step and fixed at a convenient value at the outset.

The method is based upon the observation that with

$$
\mu(x) = \frac{(x, Ax)}{(x, x)}, \quad x \neq 0 \text{ in } \mathcal{H},
$$

we have

$$
\lambda'_1 = \sup_{x \neq 0} \mu(x), \quad x \text{ in } \mathcal{H}.
$$

The iteration is determined as follows. Select an integer $s > 1$ and an initial vector x^0 in \mathcal{H}. In the space $\mathcal{A}(x^0)$ spanned by the vectors $x^0, Ax^0, \ldots, A^{s-1}x^0$ determine a vector x^1 which maximizes $\mu(x)$ for x in $\mathcal{A}(x^0)$; we shall show that x^1 is unique, apart from a scalar factor, and that it may be chosen in the form $x^1 = x^0 + \eta$, with $(x^0, \eta) = 0$. Clearly $\mu(x^0) \leq \mu(x^1)$. In the next step we similarly choose $x^2 = x^1 + \eta$ as the vector in the space $\mathcal{A}(x^0)$ spanned by $x^1, Ax^1, \ldots, A^{s-1}x^1$ which maximizes $\mu(x)$ in this space. In this way we construct a sequence $\{x^i\}$ with nondecreasing values $\mu(x^i)$. The determination of each x^i involves solving for a characteristic vector of a self-adjoint matrix of order at most s.

Now suppose x^0 is such that $F(\lambda)x^0 \neq x^0$ for $\lambda < \lambda'_1$. Then we shall prove that the numbers $\mu(x^i)$ converge to λ'_1; and, further, that the unit vectors $u^i = x^i/|x^i|$ converge weakly to a characteristic vector...

Received by the editors December 22, 1950.

1 The preparation of this paper was sponsored (in part) by the Office of Naval Research.

2 An iterative procedure different from ours is given by $x^{i+1} = Ax^i$. For a discussion of this method see R. Wavre, L'itération directe des opérateurs hermitiens et deux théories qui en dépendent, Comment Math. Helv. vol. 15 (1942–1943) pp. 299–317.
belonging to \(\lambda_i' \) if \(\lambda_i' \) is a characteristic number, but that \(u^i \) converges weakly to 0 if \(\lambda_i' \) is in the continuous spectrum. If \(\lambda_i' \) is an isolated point of the spectrum \(S(A) \) (and thus necessarily a characteristic number), and if the initial vector \(x^0 \) has a non-null projection on the characteristic manifold belonging to \(\lambda_i' \), then the vectors \(x^i \) will converge (strongly) to a characteristic vector in this manifold. More generally, if no assumptions are made on \(x^0 \), then these convergence properties hold if \(R \) is interpreted as the invariant closed linear manifold determined by \(x^0, Ax^0, A^2x^0, \ldots \).

By minimizing instead of maximizing \(\mu \) at each step we obtain entirely analogous results for the infimum of the spectrum of \(A \). We shall limit our discussion to the maximizing procedure. Further we shall suppose that \(R \) is a real Hilbert space, not necessarily separable; there is no difficulty in extending the treatment to the complex case.

This paper is a generalization of an earlier one\(^8\) and some of the results obtained there will be used here.

2. An invariant subspace. We are dealing with a bounded self-adjoint operator \(A \) on a real Hilbert space \(R \), not necessarily separable, whose elements we call vectors. We let \(F(\lambda) \) (continuous on the right) denote the spectral family of \(A \) and \(S(A) \) the spectrum of \(A \). Thus

\[
A = \int_{-\infty}^{\infty} \lambda dF(\lambda) = \int_{\mathbb{R}} \lambda dF(\lambda).
\]

A characteristic number (that is, a member of the point spectrum of \(A \)) is a real number \(\lambda \) such that

\[
Ay = \lambda y
\]

for some \(y \neq 0 \) in \(R \); \(y \) is a characteristic vector of \(A \) belonging to \(\lambda \). The characteristic vectors belonging to \(\lambda \) determine a closed linear manifold, the characteristic manifold, which we designate by \(L(\lambda) \). This manifold is the projection manifold of \(F(\lambda+) - F(\lambda-) = F(\lambda) - F(\lambda-) \), where \(F(\lambda+) \) and \(F(\lambda-) \) denote, respectively, right- and left-hand limits.

We define \(\mu(x) \) as in (1), and as before let

\[
\lambda_i' = \sup S(A).
\]

We have

\[
\mu(x) \leq \lambda_i', \quad x \neq 0 \text{ in } R.
\]

The proof is like that of (4) below. (We shall not require the stronger result (2).) Suppose now that λ'_I is a characteristic number. Let B' be the set $S(A)$ with λ'_I deleted, and put $\lambda'_I = \sup B'$. Then we show that

$$
(4) \quad \mu(x) \leq \lambda'_I, \quad x \neq 0 \text{ in } \mathbb{R} \text{ and orthogonal to } \mathcal{L}(\lambda'_I).
$$

For let x be as described; we may assume $|x| = 1$. Then

$$
\mu(x) = (Ax, x) = \int_{S(A)} \lambda'_I |F(\lambda)x|^2 = \int_{B'} + \int_{\lambda'_I}.
$$

The second integral vanishes by the orthogonality of x; the first integral is dominated by $\lambda'_I |x|^2 = \lambda'_I$, as desired. We shall not require the sharper result $\lambda'_I = \sup \mu(x)$ (as in (4)).

In the main we shall deal with the closed linear manifold determined by an initial non-null vector x^0 and the powers Ax^0, A^2x^0, \ldots. We denote this manifold by \mathcal{C}; symbolically

$$
(5) \quad \mathcal{C} = (x^0, Ax^0, A^2x^0, \ldots).
$$

\mathcal{C} is a Hilbert space which is invariant under A, that is, $A\mathcal{C} \subset \mathcal{C}$. We denote by B the operator A with domain restricted to \mathcal{C}, that is, B is a bounded self-adjoint operator on \mathcal{C} such that $Bx = Ax$ for x in \mathcal{C}. It is not difficult to see that the spectral family $E(\lambda)$ of B is obtained from the spectral family $F(\lambda)$ of A by

$$
(6) \quad E(\lambda)x = F(\lambda)x, \quad x \in \mathcal{C};
$$

we omit the proof.

Clearly if a number is in the resolvent set of A then it is in the resolvent set of B. Thus $S(B) \subset S(A)$. We let

$$
(7) \quad \lambda_1 = \sup S(B).
$$

The point spectrum of B is obviously a subset of the point spectrum of A. Further, the characteristic numbers of B are all simple. For let λ be such a number and let y_1, y_2 be independent characteristic vectors of B belonging to λ. Then some non-null linear combination y of these vectors is orthogonal to x^0. From $By = \lambda y$ it follows readily that y is orthogonal to all powers $A^jx^0 = B^jx^0, j = 0, 1, 2, \ldots$. Hence, by (5), y is orthogonal to \mathcal{C}. But y is in \mathcal{C}. Hence $y = 0$; contradiction. The next lemma shows how the characteristic vectors of B are determined.

Lemma 1. Let λ be a characteristic number of A and $y(\lambda)$ be the projection of x^0 on the characteristic manifold $\mathcal{L}(\lambda)$ of A. Then λ is a
characteristic number of B if and only if $y(\lambda) \neq 0$. If $y(\lambda) \neq 0$, then this vector is the unique characteristic vector of B (apart from a scalar factor) belonging to λ.

Suppose λ is characteristic for B with characteristic vector $y \neq 0$ in \mathfrak{C}. If $y(\lambda) = 0$, then $L(\lambda)$ is orthogonal to x^0 and hence, by (5), to \mathfrak{C}. But y is in $L(\lambda)$. Hence $y = 0$; contradiction.

Now suppose $y(\lambda) \neq 0$. By (6) and the definition of $y(\lambda)$,

$$[E(\lambda) - E(\lambda-)]x^0 = [F(\lambda) - F(\lambda-)]x^0 = y(\lambda).$$

Thus λ is a characteristic number of B and $y(\lambda)$ is a characteristic vector. The uniqueness follows from the earlier remark that λ is simple for B.

3. The iteration procedure. Consider a fixed integer $s > 1$ and a fixed vector $x \neq 0$ in \mathfrak{R}. Define $\mathfrak{A}(x)$ as the finite-dimensional space

$$\mathfrak{A}(x) = (x, Ax, \ldots, A^{s-1}x),$$

that is, the space spanned by the vectors indicated on the right. Suppose that the dimension of $\mathfrak{A}(x)$ is s. The following statements in this paragraph were established in §§2 and 3 of the previously cited paper by the author. The vectors $\xi_0, \xi_1, \ldots, \xi_{s-1}$ defined recursively by

$$\xi_0 = x, \quad \xi_1 = A\xi_0 - \mu_0\xi_0, \quad \mu_0 = \mu(x),$$

$$(8) \quad \xi_{j+1} = A\xi_j - \mu_j\xi_j - t_j^2\xi_{j-1}, \quad \mu_j = \mu(\xi_j), \quad t_j = \frac{\|\xi_j\|}{\|\xi_{j-1}\|}, \quad j = 1, 2, \ldots, s - 1,$$

form an orthogonal basis for $\mathfrak{A}(x)$. If the polynomials $p_j(\lambda)$ are defined by

$$p_0(\lambda) = 1, \quad p_1(\lambda) = \lambda - \mu_0,$$

$$p_{j+1}(\lambda) = p_j(\lambda)(\lambda - \mu_j) - t_j^2p_{j-1}(\lambda), \quad j = 1, 2, \ldots, s - 1,$$

then

$$(9) \quad \xi_j = p_j(A)x.$$

The roots of $p_j(\lambda)$ are simple and real; let ν_j denote the maximum root. Then ν_j is the maximum of $\mu(x)$ for x in $(x, Ax, \ldots, A^{s-1}x)$. In particular, letting $\nu = \nu_n$,

$$\nu = \max \mu(x), \quad x \neq 0 \text{ in } \mathfrak{A}(x),$$

$$\nu_1 \leq \nu_2 \leq \ldots \leq \nu_n = \nu.$$
Also

(11) \(p_i(\lambda') p_j(\lambda) \geq 0 \), \(|p_i(\lambda')| \geq |p_j(\lambda)| \), \(\lambda' \leq \lambda \leq \nu_j \).

Finally, there is a unique vector \(x^* \) in \(\mathcal{A}(x) \) of the form \(x + \eta \) with \((x, \eta) = 0 \) for which

(12) \(\mu(x^*) = \nu \).

It is given by

(13) \[x^* = x + \sum_{i=1}^{r-1} \frac{p_j(v)}{\tau_j} \xi_i \]

where

(14) \[\tau_j = \frac{t_1 t_2 \cdots t_j}{|x|} \]

Consider now the proposed iteration scheme. We construct a sequence of vectors \(x^0, x^1, x^2, \cdots \) by choosing \(x^{i+1} \) as that vector in \(\mathcal{A}(x^i) \) of the form \(x^i + \eta \), \((x^i, \eta) = 0 \), which maximizes \(\mu(z) \), \(z \in \mathcal{A}(x^i) \).

Assume for the moment that for each \(i \), \(\mathcal{A}(x^i) \) has dimension \(s \). By (13) we have the explicit formula

(15) \[x^{i+1} = x^i + \sum_{j=1}^{r-1} \frac{p_j(v)}{(\tau_j)^2} \xi_j, \quad i = 0, 1, 2, \cdots, \]

where the superscript "\(^{*}\)" on the right has the obvious interpretation.

It is clear that all vectors arising in this construction lie in the invariant space \(\mathcal{X} \) of (5).

By (9) we have the alternative formula

(16) \[x^{i+1} = \left[I + \sum_{j=1}^{r-1} \frac{p_j(v)}{(\tau_j)^2} p_j(B) \right] x^i, \]

where \(I \) is the identity operator. By the extremum property of \(x^{i+1} \) in \(\mathcal{A}(x^i) \),

(17) \(\mu^{i+1} \geq \mu^i \), \quad where \(\mu^i = \mu(x^i) \).

From (15), (14) and the orthogonality of the \(\xi_j \) for each \(i \),

(18) \[|x^{i+1}|^2 = |x^i|^2 \left\{ 1 + \sum_{j=1}^{r-1} \left[\frac{p_j(v)}{\tau_j} \right]^2 \right\}. \]

We consider now the case when for some (first) value \(k \), \(\mathcal{A}(x^k) \) has
dimension less than \(s \). Then \(A(x^k) \) is invariant under \(A \), and the
vector \(x^{k+1} \) maximizing \(\mu(x) \) in this subspace is a characteristic vector
of \(A \). (This vector is given by (15) with "s" replaced by the dimension
of the subspace.) Since \(A(x^{k+1}) = (x^{k+1}) \), it follows that the sequence
\(\{ x^i \} \) has the constant value \(x^{k+1} \) for \(i \geq k+1 \). The iteration now becomes trivial, and the forthcoming proofs can be readily simplified
to apply to this case. To save space we shall henceforth assume that for each \(i \) the dimension of \(A(x^i) \) is \(s \), and leave to the reader
the appropriate modifications for the other case.

4. Convergence theorem. We establish the following convergence theorem.

Theorem 1. For a given integer \(s > 1 \) and initial vector \(x^0 \neq 0 \), let
\(\{ x^i \} \) be the sequence determined above. Let
\[
\mu^i = \frac{x^i}{|x^i|}.
\]
Then
\[
\lim_{i \to \infty} \mu(x^i) = \lambda_1,
\]
where \(\lambda_1 \) is given by (7). Further, if \(\lambda_1 \) is a characteristic number of \(B \),
then \(u^i \) converges weakly (in \(\mathbb{R} \)) to a characteristic vector of \(B \) belonging
to \(\lambda_1 \); if \(\lambda_1 \) is not a characteristic number of \(B \), then \(u^i \) converges weakly
to 0.

Proof. By (3), interpreted for \(\mathcal{C} \), \(\mu(x) \leq \lambda_1 \) for \(x \neq 0 \) in \(\mathcal{C} \). Thus,
from (17), the numbers \(\mu^i \) have a limit \(\mu \leq \lambda_1 \). By definition \(p_2'(\lambda) \)
\[
= (\lambda - \mu^2)(\lambda - \mu(\xi^i)) - |\xi^i|^2/|x^i|^2,
\]
where
\[
\xi^i = Bx^i - \mu^i x^i.
\]
From (10) and (11) we have \(p_2'(\nu^i) \geq 0 \). Since \(\mu^{i+1} = \nu^i \) by (12), we
conclude that
\[
\frac{|\xi^i|^2}{|x^i|^2} \leq (\mu^{i+1} - \mu^i)(\mu^{i+1} - \mu(\xi^i)).
\]
Since the second factor on the right is bounded, the sequence on the
left tends to 0; in fact
\[
\sum (\nu^i)^2 < \infty, \quad \nu^i = |\xi^i|/|x^i|.
\]
From (19),
\[
\lim_{i \to \infty} (Bu^i - \mu^i u^i) = 0.
\]
Suppose \(\mu < \lambda_1 \). Choose \(\hat{\lambda} \) so that \(\mu < \hat{\lambda} < \lambda_1 \). Let \(\Delta = I - E(\hat{\lambda} - \cdot) \).
We note first that \(\Delta x^0 \neq 0 \), i.e., \(\Delta u^0 \neq 0 \). For, suppose \(\Delta x^0 = 0 \). Then from \(\Delta B = B \Delta \) would follow \(\Delta x = 0 \) for \(x = B x^0 \), \(k = 0, 1, 2, \ldots \), and thus \(\Delta x = 0 \) for \(x \) in \(\mathfrak{C} \), by (5). Hence \(E(\hat{\lambda} - \cdot) = I \), so that \(\sup \mathfrak{S} (B) \leq \hat{\lambda} \), that is, \(\lambda_1 \leq \hat{\lambda} \), a contradiction.

We put

\[
R_i = \frac{\hat{\rho}_i(v^i)}{(v^i)^2}, \quad i = 1, 2, \ldots, s - 1, i = 0, 1, 2, \ldots.
\]

By (16)

\[
x^{i+1} = \int_{-\alpha}^{\lambda_1} \left[1 + R_1^i \hat{\rho}_1(\lambda) + \cdots + R_{s-1}^i \hat{\rho}_{s-1}(\lambda) \right] dE(\lambda) x^i.
\]

Hence

\[
|\Delta x^{i+1}|^2 = \int_{\lambda}^{\lambda_1} \left[1 + R_1^i \hat{\rho}_1(\lambda) + \cdots + R_{s-1}^i \hat{\rho}_{s-1}(\lambda) \right]^2 d|E(\lambda) x^i|^2.
\]

By (11), the quantity in brackets is an increasing function of \(\lambda \) in the range of integration. Thus

\[
|\Delta x^{i+1}|^2 \geq \left[1 + R_1^i \hat{\rho}_1(\lambda) + \cdots + R_{s-1}^i \hat{\rho}_{s-1}(\lambda) \right] |\Delta x^i|^2.
\]

From (18)

\[
\frac{|x^{i+1}|^2}{|x^i|^2} = 1 + R_1^i \hat{\rho}_1(v^i) + \cdots + R_{s-1}^i \hat{\rho}_{s-1}(v^i),
\]

so that, by (11),

\[
|\Delta u^{i+1}|^2 \geq \frac{1 + R_1^i \hat{\rho}_1(\lambda) + \cdots + R_{s-1}^i \hat{\rho}_{s-1}(\lambda)}{1 + R_1^i \hat{\rho}_1(v^i) + \cdots + R_{s-1}^i \hat{\rho}_{s-1}(v^i)} |\Delta u^i|^2 \geq |\Delta u^i|^2.
\]

On the other hand

\[
|Bu^i - \mu_i u^i|^2 = \int_{-\alpha}^{\lambda_1} (\lambda - \mu_i)^2 d|E(\lambda) u^i|^2
\]

\[
\geq \int_{\lambda}^{\lambda_1} (\lambda - \mu_i)^2 d|E(\lambda) u^i|^2 \geq (\hat{\lambda} - \mu_i)^2 |\Delta u^i|^2.
\]

By (21) it follows that \(|\Delta u^i| \to 0 \), a contradiction to (23) and the earlier result \(|\Delta u^0| \neq 0 \). This establishes the first conclusion of the theorem.
Suppose now that \(\lambda_1 \) is not a characteristic number of \(B \). If \(u^i \) does not converge weakly to 0 (in \(\mathcal{C} \)), then a subsequence \(u^k \) in \(\mathcal{C} \) must have a weak limit \(\bar{u} \neq 0 \) (in \(\mathcal{C} \)), since \(|u^i| = 1 \). Thus \(Bu^k - \mu^k u^k \) converges weakly to \(B\bar{u} - \lambda_1 \bar{u} \). But this sequence converges (strongly) to zero by (21). Hence \(B\bar{u} - \lambda_1 \bar{u} = 0 \), contrary to \(\lambda_1 \) not being characteristic. Hence \(u^i \) converges weakly to 0 in \(\mathcal{C} \), and hence in the original space \(\mathcal{R} \).

Finally, suppose \(\lambda_1 \) is characteristic for \(B \). Let \(y_1 \) be a characteristic vector of \(B \) belonging to \(\lambda_1 \). By Lemma 1, \((x^0, y_1) \neq 0 \) and \(\lambda_1 \) is simple. We normalize \(y_1 \) so that \(|y_1| = 1 \), \((x^0, y_1) > 0 \). Any solution of \(Bz = \lambda_1 z \) in \(\mathcal{C} \) is a multiple of \(y_1 \). By (16) and (22),

\[
(x^{i+1}, y_1) = \left[1 + R^i_1 p_1(\lambda_1) + \cdots + R^i_{n-1} p_{n-1}(\lambda_1) \right] (x^i, y_1),
\]

\[
(u^{i+1}, y_1) \geq \frac{1}{1 + R^i_1 p_1(\lambda_1) + \cdots + R^i_{n-1} p_{n-1}(\lambda_1)} (u^i, y_1) \geq (u^i, y_1),
\]

using (11). Hence \((u^i, y_1) \to L > 0 \). Now suppose \(\bar{u} \) is any weak limit (in \(\mathcal{C} \)) of a subsequence \(u^k \) of \(u^i \). As in the above paragraph, \(B\bar{u} = \lambda_1 \bar{u} \). Hence \(\bar{u} = Ly_1 \). But \(L = \lim_{k \to \infty} (u^k, y_1) = (y_1, y_1) = l \). Hence \(l = L, \bar{u} = Ly_1 \), independently of \(\bar{u} \). This establishes that \(Ly_1 \) is the weak limit in \(\mathcal{C} \), and thus in \(\mathcal{R} \), of \(u^i \), and completes the proof of the theorem.

In the following corollary we relate the preceding result directly to the original operator \(A \).

Corollary to Theorem 1. If \(F(\lambda)x^0 \neq x^0 \) for \(\lambda < \lambda_1' \), where \(\lambda_1' = \sup S(A) \), then \(\mu^i \) converges to \(\lambda_1' \). If \(\lambda_1' \) is characteristic for \(A \) and \(x^0 \) has a non-null projection on the characteristic manifold \(\mathcal{L}_p \) of \(A \) belonging to \(\lambda_1' \), then \(u^i \) converges weakly to a characteristic vector in \(\mathcal{L}_p \).

Proof. Consider the first statement of the corollary. We have \(\lambda_1 \leq \lambda_1' \). Suppose \(\lambda_1 < \lambda_1' \). Then by (6)

\[
x_0 = \int_{-\infty}^{\lambda_1} dE(\lambda) x^0 = \int_{-\infty}^{\lambda_1} dF(\lambda) x^0 = F(\lambda_1) x^0,
\]

contrary to hypothesis. Hence \(\lambda_1 = \lambda_1' \), and the conclusion follows from Theorem 1. The second statement is a consequence of Lemma 1 and Theorem 1.

5. **Convergence theorem for \(\lambda_1 \) isolated.**

Lemma 2. Let \(\lambda_1 \) be an isolated point of \(S(B) \). Then the unit vectors \(u^i \) converge to the characteristic vector of \(B \) belonging to \(\lambda_1 \).
Proof. Since \(\lambda_1 \) is isolated, it is a characteristic number for \(B \). Let \(y_1 \) be the corresponding characteristic vector, normalized so that \(|y_1| = 1 \) and \((x^0, y_1) > 0\). In the last paragraph of the proof of Theorem 1 we showed that \(u^i \) converged weakly to \(Ly_1 \), where \(L = \lim_{i \to \infty} (u^i, y_1) \), \(i \geq 0 \). We now show that \(u^i \) converges to \(y_1 \).

Write \(u^i = y^i + z^i \) with \(y^i \) a multiple of \(y_1 \) and \(z^i \) in \(\mathcal{C} \) orthogonal to \(y_1 \). Let

\[
\lambda_2 = \sup \mathcal{B},
\]

where \(\mathcal{B} = \mathbb{S}(B) \) with \(\lambda_1 \) deleted. Then \(\lambda_2 < \lambda_1 \), and by (4), interpreted for \(\mathcal{C} \), we have \(\mu(z^i) \leq \lambda_2 \). Now \((y^i, y_1) = (u^i, y_1) - (Ly_1, y_1) = L \). Hence \(y^i = (y^i, y_1) y_1 \) converges to \(Ly_1 \).

Using the definition (1) of \(\mu \) we find

\[
\mu^i = \mu(u^i) = (Bu^i, u^i) = \mu(y^i) |y^i|^2 + \mu(z^i) |z^i|^2
\]

\[
= \lambda_1 (1 - |z^i|^2) + \mu(z^i) |z^i|^2.
\]

Thus

\[
\lambda_1 - \mu^i = (\lambda_1 - \mu(z^i)) |z^i|^2 \geq (\lambda_1 - \lambda_2) |z^i|^2.
\]

Since \(\mu \to \lambda_1 \) by Theorem 1, it follows that \(z^i \) converges to 0. From \(u^i = y^i + z^i \) we now deduce that \(u^i \) converges to \(Ly_1 \). Since \(|u^i| = |y_1| = 1 \), we must have \(L = 1 \). This completes the proof.

Our goal is to replace "\(u^i \)" by "\(x^i \)" in the above lemma. For this it is clearly sufficient to show that the increasing lengths \(|x^i| \) (see (18)) are bounded. To this end we introduce the next lemma. (As stated at the end of §3, we are assuming that for each \(i \) the vectors \(x^i, Ax^i, \ldots, A^{s-1}x^i \) are independent. As shown there, if this is not the case then the sequence \(\{x^i\} \) is eventually constant, and obviously the lengths \(|x^i| \) converge.)

Lemma 3. Let \(\lambda_1 \) be an isolated point of \(\mathbb{S}(B) \). There is a constant \(K \), independent of \(i \) and \(j \), such that for \(i \) sufficiently large,

\[
|B^j(x^i)| \leq K(\tau_i)^j, \quad j = 1, 2, \ldots, s - 1.
\]

We shall not give the details of the proof; they can be found in the proof of a similar result in the previously cited paper by the author. One first establishes, as in Lemma 1 of the earlier paper, that

\[
\lambda_1 - \mu(x) \leq \frac{1}{\mu(x) - \lambda_2} |Bx - \mu(x)x|^2
\]

for every \(x \) in \(\mathcal{C} \) with \(\mu(x) > \lambda_2 \), \(\lambda_2 \) as in (24). The lemma is then established by an argument like that of Lemma 2 of the earlier paper.
Theorem 2. Let \(\lambda_1 \) be an isolated point of \(\mathcal{S}(B) \). Then the vectors \(x^i \) of Theorem 1 converge to the characteristic vector of \(B \) belonging to \(\lambda_1 \).

Proof. We use (18). By a standard theorem on infinite products the numbers \(|x^i|^2 \) will converge if each of the series \(\sum_{j=1}^{s-1} |p^j(x^i)/\tau_j|^2 \), \(j = 1, 2, \cdots, s-1 \), converges. By Lemma 3 this will occur if each of the series \(\sum_{j=0}^{\infty} (\tau_j)^2 \) converges. By (20), this series converges for \(j = 1 \). By (8),

\[
|x_{i+1}^i| \leq K_1 |x_i^i| + (t_i^i)^2 |x_{i-1}^i|.
\]

Hence

\[
t_{i+1}^i \leq K_1 + t_i^i.
\]

Since \(t_i^i \) is bounded, it follows that there is a constant \(K_2 \) such that \(t_{i+1}^i \leq K_2 \) for all \(i \) and for \(j = 1, 2, \cdots, s-2 \). Hence by (14),

\[
\sum_i (t_{i+1}^i)^2 = \sum_i (t_j^i)^2 (t_{i+1}^i)^2 \leq K_2 \sum_i (\tau_j^i)^2.
\]

This establishes the convergence of all the series and completes the proof.

By Lemma 1 and Theorem 2 we obtain the following result.

Corollary to Theorem 2. Let \(\lambda_1' = \sup \mathcal{S}(A) \) be an isolated point of \(\mathcal{S}(A) \). If \(x^0 \) is not orthogonal to the characteristic manifold of \(A \) belonging to \(\lambda_1' \), then \(x^i \) converges to a characteristic vector in this manifold.