CERTAIN HOMOGENEOUS UNICOHERENT INDECOMPOSABLE CONTINUA

F. BURTON JONES

A simple closed curve is the simplest example of a compact, non-degenerate, homogeneous plane continuum. If a bounded, nondegenerate, homogeneous plane continuum has any local connectedness property, even of the weakest sort, it is known to be a simple closed curve \([1, 2, 3]\). The recent discovery of a bounded, nondegenerate, homogeneous plane continuum which does \textit{not} separate the plane \([4, 5]\) has given substance to the old question as to whether or not such a continuum must be indecomposable. Under certain conditions such a continuum must \textit{contain} an indecomposable continuum \([6]\). It is the main purpose of this paper to show that every bounded homogeneous plane continuum which does not separate the plane is indecomposable.

NOTATION. If \(M\) is a continuum and \(x\) is a point of \(M\), \(U_x\) will be used to denote the set of all points \(z\) of \(M\) such that \(M\) is aposyndetic at \(z\) with respect to \(x\).\(^\text{1}\) It is evident that \(U_x\) is an open subset of \(M\).

Lemma. \textit{If the compact metric continuum} \(M\) \textit{is homogeneous and} \(x\) \textit{and} \(y\) \textit{are distinct points of} \(M\), \textit{then} \(U_y\) \textit{is not a proper subset of} \(U_x\).

Proof. Suppose on the contrary that \(U_y\) is a proper subset of \(U_x\). Since \(M\) is homogeneous, there exists a homeomorphism \(T\) such that \(T(M) = M\) and \(T(x) = y\). Then \(T(U_x) = U_y\) and \(T(U_y)\) is a proper subset of \(U_x\). Hence there exists a sequence \(x_0 = x\), \(x_1 = y\), \(x_2 = T(y)\), \(\cdots\), \(x_n = T^n(x)\), \(\cdots\) of points of \(M\) such that for each positive integer \(n\), \(U_{x_n}\) is a proper subset of \(U_{x_{n-1}}\). For no two non-negative integers \(i\) and \(j\) is \(x_i = x_j\), because if \(x_i = x_j\) then \(U_{x_i} = U_{x_j}\). Consequently the sequence \(x_1, x_2, x_3, \cdots\) has a limit point \(x_0\). Now for each positive integer \(n\), \(U_{x_n}\) is a subset of \(U_{x_{n-1}}\), because if \(p\) is a point of \(U_{x_n}\) there exist a subcontinuum \(K\) of \(M\) and an open subset \(V\) of \(M\) such that \(M - x_n \supseteq K \cup V \cup p\); hence for infinitely many positive integers \(n\), \(M - x_n \supseteq K \cup V \cup p\); so for infinitely many positive integers \(n\), \(M\) is aposyndetic at \(p\) with respect to \(x_n\) and hence \(p\) belongs to \(U_{x_n}\).

Evidently \(x_n \neq x_n\), \(n = 1, 2, 3, \cdots\). And since \(M\) is homogeneous,

\(855\)

\(^\text{1}\) Numbers in brackets refer to the bibliography at the end of this paper.

\(^\text{2}\) The continuum \(M\) is \textit{aposyndetic} at the point \(z\) of \(M\) with respect to the point \(x\) of \(M\) provided that \(M\) contains a continuum \(K\) and an open (rel. \(M\)) subset \(V\) such that \(M - x \supseteq K \cup V \cup z\).
there exists a homeomorphism T_1 such that $T_1(M) = M$ and $T_1(x) = x_\omega$. Then $T_1TT_1^{-1}$ is a homeomorphism of M onto itself such that if we let $x_{\omega+1} = T_1TT_1^{-1}(x_\omega)$, $T_1TT_1^{-1}(U_{x_\omega}) = U_{x_{\omega+1}}$, which is a proper subset of U_{x_ω}. This process can be continued uncountably many times to produce a well-ordered sequence $\alpha = x_1, x_2, x_3, \ldots, x_i, \ldots (i < \omega_1)$, of distinct points of M such that (1) if x_i of α has no immediate predecessor in α, x_i is a limit point of some countable subsequence of α running through the terms of α preceding x_i in α, and (2) $U_{x_1}, U_{x_2}, U_{x_3}, \ldots, U_{x_i}, \ldots$ is a monotone descending sequence of distinct open subsets of M. In a compact metric space (2) is impossible.

Theorem 1. A homogeneous, hereditarily unicoherent, compact metric continuum M is indecomposable.

Proof. Suppose that U is an open subset of M and H is a subset of $M - U$ such that in order for a point x to belong to H it is necessary and sufficient that $U_x = U$. In case M contains no such sets U and H, M is indecomposable by Theorem 9 of [7].

It is rather easy to see that H is closed. Suppose that there exists a point y of $H - H$. Let z be a point of U_y. Then M is aposyndetic at z with respect to y and hence M is aposyndetic with respect to some point of H. Consequently z belongs to U. But by the lemma U_y cannot be a proper subset of U and hence $U_y = U$ and y belongs to H. So H is closed.

If w is a point of M such that some point x of H cuts w from a point z_1 of U, then x cuts w from all points of U and w belongs to H. For suppose that z_2 is a point of U. There exist continua K_1 and K_2 and open sets V_1 and V_2 such that $M - x \supset K_1 \supset V_1 \supset z_1$ ($i = 1, 2$). Now if x cuts V_1 from V_2, it follows from the homogeneity of M that every point of M cuts between two open subsets of M; but by Corollary 2 of [8], this is impossible. So x does not cut V_1 from V_2 and hence there exists a continuum K in $M - x$ such that $K \cdot V_1 \neq 0$ and $K \cdot V_2 \neq 0$. The continuum $K_1 + K + K_2$ contains z_1 but not x; hence $K_1 + K + K_2$ does not contain w; consequently x cuts w from all points z_2 of U and furthermore z_2 belongs to U_w. This shows that U is a subset of U_w and, by the lemma, $U = U_w$. So w belongs to H.

* Throughout this proof M will be considered to be space. If there do not exist points x and z of M such that M is aposyndetic at z with respect to x, then M is indecomposable (Theorem 9 of [7]). So because M is homogeneous it will be assumed that for each point x of M, U_x exists (that is, nonvacuous).

* A point x cuts w from z (in M) provided that there exists no subcontinuum of M lying in $M - x$ and containing $w + z$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
For each point o of H, let N_o denote o together with all points x of H such that x cuts o from U. The set N_o is closed. Now suppose that for some point o of H, o does not cut all other points of N_o from U. Then N_o contains a point o_1 such that N_{o_1} is a subset of $N_o - o$. A homeomorphism of M onto itself carrying o into o_1 leaves U invariant and carries o_1 into a point o_2 of H such that N_{o_2} is a proper subset of N_{o_1}. As in the proof of the lemma, this process may be continued uncountably many times to produce an uncountable monotone sequence of distinct closed sets. This is impossible. Consequently o cuts all other points of N_o from U. It follows at once that each point of N_o cuts all other points of N_o from U and in particular if a point p of H cuts a point o of H from U, then o cuts p from U, and $N_o = N_p$.

The set H contains no domain. For suppose on the contrary that H contains a domain D. Let o denote a point of H. Then N_o does not contain D, for if it did, a point x of D could cut the domain $D - x$ from the domain U contrary to Corollary 2 of [8]. So $D - D \cdot N_o$ is a domain in H containing no point of N_o. Now M is not aposyndetic at any point of $D - D \cdot N_o$ with respect to a point of N_o. Hence by Theorem 6 of [7], if z is a point of U, $D - D \cdot N_o$ contains a point x and N_o contains a point y such that y cuts x from z and hence from U. Therefore y cuts x from U and consequently x belongs to N_o. This is a contradiction since x belongs to $D - D \cdot N_o$. So H contains no domain.

The domain U is dense in M. Suppose the contrary. There exists a domain D lying in $M - (U + H)$. Let y be a point of H. By the definition of U, M is not aposyndetic at any point of D with respect to y. Let z be a point of U. By Theorem 6 of [7], D contains a point x such that y cuts x from z. Hence (by paragraph 3 of this proof) x belongs to H contrary to construction. So U is dense in M and the boundary of U is $M - U$.

The set $M - U$ is a continuum. Obviously $M - U$ is closed. Suppose that $M - U$ is not connected; then $M - U = A + B$ where $A = A$, $B = B$, and $A \cdot B = 0$. Suppose that A contains a point x of H. There exists a domain D such that D contains B but $D \cdot A = 0$. Each point of the boundary β of D belongs to U; so there exist a finite collection K_1, K_2, \ldots, K_n of continua and a collection V_1, V_2, \ldots, V_n of domains such that V_1, V_2, \ldots, V_n covers β and for each i, $1 \leq i \leq n$, $M - x \supseteq K_i \supseteq V_i$. Since by Corollary 2 of [8] (and the homogeneity of M) x does not cut any two domains from each other, there exists a
continuum K in $M - x$ which contains D. Hence M is aposyndetic at each point of B with respect to x. This is contrary to the definitions of B and U. Hence $M - U$ is connected.

Let o be a point of H. Then $N_o = M - U$. Suppose on the contrary that q is a point of $M - U$ not in N_o. If q cuts o from a point of U_q, then q cuts U_q from o. Let T be a homeomorphism of M onto itself carrying o into q.* Evidently $T(U) = U_q$ and (by paragraph 3, $T(H)$ taking the role of H) o belongs to $T(H)$. Therefore o cuts q from U_q.

But $U_q \cap U \neq 0$ since both U and U_q are open, dense subsets of M; so o cuts q from a point of U. Hence q belongs to H. It follows that q cuts o from U and thus belongs to N_o. From this contradiction it is evident that no point q of $M - (U + N_o)$ cuts o from a point of U_q.

Now let K be a continuum containing a domain V of U and lying in $M - o$. Since each point of N_o cuts every other point of N_o from U, K contains no point of N_o. Since no point of N_o cuts a point q of $M - (U + N_o)$ from a point of U, K may be assumed to contain a point of $M - (U + N_o)$. For each point q of K there exists a continuum C_q from V to o lying in $M - q (V \cdot U_q \neq 0)$. Let F denote a finite collection of these continua, C_q, such that if p is a point of $K \cdot [M - (U + N_o)]$ there exists a continuum C_p from V to o lying in $M - p$.

Let G be a collection consisting of H together with every image of H under homeomorphisms of M onto itself. It is easy to see that G fills up M and no two elements of G have a point in common. Furthermore, G is upper-semicontinuous for if some sequence x_1, x_2, x_3, \cdots of points of distinct elements of G converged to a point x of an element of G, say H, but some infinite sequence y_1, y_2, y_3, \cdots of points from the same elements of G converged to a point y of $M - H$, then M would be aposyndetic at y with respect to x. But for each i, M is not

* Roughly stated the purpose of T is merely to shift the frame of reference from o to q, so that results already obtained for H and U will apply to similar sets constructed for q.
aposyndetic at y, with respect to x, and this contradicts Theorem 1 of [7]. So G is upper-semicontinuous.

With respect to its elements as points, G is a continuum M'. Furthermore M' is homogeneous and aposyndetic. In such a continuum the meaning of "cut point" and "separating point" are the same [9]. Since M' contains a nonseparating point, every point of M' is a nonseparating point because of the homogeneity. Let A and B denote distinct points of M' and let T denote a continuum in M' irreducible from A to B. Let X denote a point of $T-(A+B)$. There exists in $M'-X$ a continuum T_1 containing $A+B$. But M' is hereditarily unicoherent. So $T-T_1$ is a subcontinuum of T containing $A+B$ but not X. This is a contradiction and from this contradiction Theorem 1 follows.

Theorem 2. If M is a homogeneous, bounded, plane continuum which does not separate the plane, M is indecomposable.

Theorem 2 follows immediately from Theorem 1.

The following question remains unanswered: Is every homogeneous, bounded, nondegenerate, plane continuum which does not separate the plane a pseudo-arc?

Bibliography

The University of North Carolina

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use