PATTERN INTEGRATION WITH IMPROPER RIEMANN INTEGRALS

R. E. CARR

1. Introduction. In a previous paper [1] we have recently introduced and discussed a type of integration, which we have called pattern integration, and have established the following theorem:

Theorem 1.1. Let \(f(x) \) be (proper) Riemann integrable, \(0 \leq x \leq 1 \). Let \((k-1)/n \leq \xi_k^{(n)} \leq k/n \) \((k = 1, 2, 3, \ldots, n)\). Let the pattern \(P \) be characterized by the dyadic number

\[
t = 0.a_1a_2a_3 \cdots a_n \cdots \quad (2),
\]

such that

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} a_k = \alpha.
\]

Then the pattern integral

\[
(P) \int_{0}^{1} f(x) dx = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \alpha_k f(\xi_k^{(n)}) = \alpha(R) \int_{0}^{1} f(x) dx.
\]

It seems desirable to extend this result, if possible, to improper Riemann integrals. In this paper we shall confine our remarks to improper integrals of the form

\[
\int_{0}^{1} f(x) dx = \lim_{\epsilon \to 0^+} (R) \int_{\epsilon}^{1} f(x) dx.
\]

(R) in front of any integral will indicate a proper Riemann integral.

2. The improper integral defined as the limit of a sum. We first consider the case where \(\alpha_k = 1 \) \((k = 1, 2, 3, \ldots)\). A fundamental difficulty not encountered in the previous paper is apparent from the definition of \(\int_{0}^{1} f(x) dx \). Bromwich and Hardy have considered this problem [2]. As they point out, the ordinary definition of this improper integral is by means of a double (repeated) limit; and in order to replace this limit by the single limit,

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f(\xi_k^{(n)}),
\]

Received by the editors December 11, 1950.

Numbers in brackets refer to the bibliography at the end of the paper.

925
some restrictions are certainly necessary. In the first place, if $0 < \xi_1^{(n)} \leq 1/n$, we can clearly choose $\xi_1^{(n)}$ so that $\left|\left(1/n\right)f(\xi_1^{(n)})\right|$ is greater than any assigned number. It is then suggested that the most obvious choice is $\xi_2^{(n)} = k/n$, and with this restriction they establish:

Theorem 2.1. Let $f(x)$ be positive and tend steadily to ∞ as x tends to zero. Let $\int_0^1 f(x)dx$ be convergent. Then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) = \int_0^1 f(x)dx.$$

The proof rests on the fact that for all n,

$$\frac{1}{n} \sum_{k=2}^{n} f\left(\frac{k}{n}\right) \leq (R) \int_{1/n}^1 f(x)dx \leq \frac{1}{n} \sum_{k=1}^{n-1} f\left(\frac{k}{n}\right),$$

while the difference between the two sums in (2.1) is

$$\frac{1}{n} \left\{ f\left(\frac{1}{n}\right) - f\left(1\right) \right\}.$$

That the limit of (2.2), as $n \to \infty$, is zero, follows from the well known result that if $f(x)$ steadily increases as x decreases and $\int_0^1 f(x)dx$ is convergent, then $\lim_{x \to 0+} xf(x) = 0$. From this the conclusion is immediate.

It appears that the following extension of the above theorem is new, although the theorem is quite elementary.

Theorem 2.2. Let $f(x)$ be positive and tend steadily to ∞ as x tends to zero. Let $\int_0^1 f(x)dx$ be convergent. Let $(1/Mn) \leq \xi_1^{(n)} \leq (1/n)$ ($M \geq 1$ and fixed), and $(k-1)/n \leq \xi_k^{(n)} \leq (k/n)$ ($k = 2, 3, \ldots, n$). Then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f(\xi_k^{(n)}) = \int_0^1 f(x)dx.$$

Proof. Define

$$A_n = \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right)$$

and

$$B_n = \frac{1}{n} \left\{ f\left(\frac{1}{Mn}\right) + \sum_{k=2}^{n} f\left(\frac{k-1}{n}\right) \right\}$$

$$= \frac{1}{n} \left\{ f\left(\frac{1}{Mn}\right) + \sum_{k=1}^{n} f\left(\frac{k}{n}\right) - f\left(1\right) \right\}.$$
Then

\[A_n \leq \frac{1}{n} \sum_{k=1}^{n} f(\xi_k^{(n)}) \leq B_n. \]

But, clearly, \(\lim_{n \to \infty} A_n = \lim_{n \to \infty} B_n = \int_0^1 f(x) \, dx \), and our conclusion follows.

A sharper criterion, in order that the relation

\[\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n} \right) = \int_0^1 f(x) \, dx \]

should hold whenever the improper integral on the right is convergent, has been given by Wintner [3] in the following result:

Theorem 2.3. If \(f(x) \) is of bounded variation on every interval \(\epsilon \leq x \leq 1 \), where \(\epsilon > 0 \), and behaves, as \(x \to 0 \), so as to satisfy the restriction

\[\int_{\epsilon}^1 \left| df(x) \right| = o(\epsilon^{-1}), \]

then the convergence of \(\int_0^1 f(x) \, dx \) implies that

\[\lim_{\epsilon \to 0^+} \epsilon \sum_{k=1}^{\infty} f(ke) \]

exists and equals \(\int_0^1 f(x) \, dx \).

The result (2.3) would follow from (2.4) by letting \(\epsilon = 1/n \).

The following extension of Wintner's result appears to be new:

Theorem 2.4. Let \(f(x) \) be of bounded variation on every interval \(\epsilon \leq x \leq 1 \), where \(\epsilon > 0 \), and let \(f(x) \) behave, as \(x \to 0^+ \), so as to satisfy the restriction

\[\int_{\epsilon}^1 \left| df(x) \right| = o(\epsilon^{-1}). \]

Let \(\xi_1 = 1/M \) (\(M \geq 1 \) and fixed), and \((k-1)/n \leq \xi_k^{(n)} \leq (k/n) \) (\(k = 2, 3, \cdots, n \)). Let \(\int_0^1 f(x) \, dx \) exist.

Then

\[\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f(\xi_k^{(n)}) = \int_0^1 f(x) \, dx. \]

Proof. From the hypothesis it follows that

\[\lim_{x \to 0} xf(x) = 0. \]
For,
\[\varepsilon \left| f(1) - f(\epsilon) \right| = \varepsilon \left| \int_{\epsilon}^{1} df(x) \right| \leq \varepsilon \int_{\epsilon}^{1} | df(x) | \to 0. \]

From Wintner's result, we know
\[\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n} \right) = \int_{0}^{1} f(x) dx. \]

Consider
\[\left\{ \frac{1}{n} \sum_{k=1}^{n} f(\xi^{(n)}_{k}) - \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n} \right) \right\}. \]

For all \(n \),
\[\left| \sum_{k=1}^{n} f(\xi^{(n)}_{k}) - \sum_{k=1}^{n} f\left(\frac{k}{n} \right) \right| \leq \sum_{k=1}^{n} \left| f(\xi^{(n)}_{k}) - f\left(\frac{k}{n} \right) \right| < \int_{(1/n)}^{1} | df(x) | + \left| \frac{1}{Mn} \right| + \left| \frac{1}{n} \right|. \]

Hence, using (2.5) and (2.6),
\[\lim_{n \to \infty} \left| \frac{1}{n} \sum_{k=1}^{n} f(\xi^{(n)}_{k}) - \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n} \right) \right| = 0, \]
and our conclusion follows.

It should be noted that a number of theorems are available in the "converse" direction, that is, in which the convergence of the improper integral \(\mathcal{F}_{0}^{1} f(x) dx \) follows from the knowledge of the existence of \(\lim_{t \to 0^+} \sum_{n \leq 1} f(n) \). In this paper, however, we are not concerned with such results.

3. A pattern integral theorem. To hope for a complete extension of Theorem 1.1 to improper integrals of the form \(\mathcal{F}_{0}^{1} f(x) dx \) is too much. Counter examples are not difficult to construct. For example, see §5 of the paper by Bromwich and Hardy [2].

The following theorem partially extends the earlier results.

Theorem 3.1. Let \(f(x) \) be positive and tend steadily to \(\infty \) as \(x \) tends to zero. Let \(\mathcal{F}_{0}^{1} f(x) dx \) be convergent. Let \((1/Mn) \leq \xi^{(n)} \leq (1/n) \) (\(M \) ≥ 1 and fixed), and \((k-1)/n \leq \xi^{(n)} \leq k/n \) (\(k = 2, 3, \ldots, n \)). Let the pattern
For any dyadic number

\[t = 0.\alpha_1\alpha_2\alpha_3 \cdots \alpha_n \cdots \] (2),

such that

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \alpha_k = \alpha.
\]

Then

\[
(P) \int_0^1 f(x) \, dx = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \alpha_k f(\xi_k^{(n)}) = \alpha \int_0^1 f(x) \, dx.
\]

Proof. Define \(f_N(x) = f(1/MN) \), \(0 \leq x < 1/N \), \(f_N(x) = f(x) \), \(1/N \leq x \leq 1 \). For all values of \(N > 0 \), \(\int_0^1 f_N(x) \, dx \) exists and

\[
(P) \int_0^1 f_N(x) \, dx = \alpha(R) \int_0^1 f_N(x) \, dx.
\]

Consider the expression

\[
\frac{1}{n} \sum_{k=1}^{n} \alpha_k f(\xi_k^{(n)}).
\]

Let the subinterval in which \(1/N \) occurs be the \(\lambda(n) \)th. (Then \(\lim_{n \to \infty} \lambda(n)/n = 1/N \).) Hence (3.2) can be written as \(I_n + II_n - III_n + IV_n \), where

\[
I_n = \frac{1}{n} \alpha_{\lambda(n)} f(\xi_{\lambda(n)}^{(n)}), \quad II_n = \frac{1}{n} \sum_{k=1}^{n} \alpha_k f_N(\xi_k^{(n)}),
\]

\[
III_n = \frac{1}{n} \sum_{k=1}^{\lambda(n)} \alpha_k f_N(\xi_k^{(n)}), \quad IV_n = \frac{1}{n} \sum_{k=1}^{\lambda(n)-1} \alpha_k f(\xi_k^{(n)}).
\]

Let us consider the behavior of \(I_n, II_n, III_n, \) and \(IV_n \), as \(n \to \infty \). Clearly \(f(\xi_{\lambda(n)}^{(n)}) \leq f(1/Mn) \), and since \(\lim_{x \to 0^+} x f(x) = 0 \), \(\lim_{n \to \infty} I_n = 0 \). From (3.1), we see that

\[
\lim_{n \to \infty} II_n = \alpha(R) \int_0^1 f(x) \, dx = \alpha \left\{ \frac{1}{N} f\left(\frac{1}{MN}\right) + (R) \int_{1/N}^1 f(x) \, dx \right\}.
\]

Now

\[
III_n = f\left(\frac{1}{MN}\right) \frac{\lambda(n) - 1}{n} \frac{1}{\lambda(n)} \lambda(n) - 1 \sum_{k=1}^{\lambda(n)-1} \alpha_k + \frac{1}{n} \alpha_{\lambda(n)} f(\xi_{\lambda(n)}^{(n)}).
\]

Hence,
We have

\[IV_n \leq \frac{1}{n} \sum_{k=1}^{\lambda(n)-1} f(\xi_k^{(n)}). \]

Hence

\[0 \leq IV_n \leq \int_0^{1/N} f(x) \, dx + \frac{1}{n} f\left(\frac{1}{Mn}\right) \]

for all \(n \). We then see that, as \(n \to \infty \), the expression (3.2) at worst oscillates between

\[\alpha(R) \int_{1/N}^1 f(x) \, dx \]

and

\[\alpha(R) \int_{1/N}^1 f(x) \, dx + \int_0^{1/N} f(x) \, dx. \]

But this is true for all \(N > 0 \), so letting \(N \to \infty \), we see from (3.3) and (3.4) that

\[\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \alpha(x) f(\xi_k^{(n)}) = \alpha(R) \int_0^1 f(x) \, dx, \]

which is the desired result.

4. Miscellaneous results. The following is an extension of Theorem 3.1.

Theorem 4.1. Let \(\mathcal{S}_{1/0} f(x) \, dx \) be convergent. Let there be a \(g(x) \) with the following properties:

1. In the interval \(0 < x \leq r \), where \(0 < r \leq 1 \), \(g(x) \) is positive and tends steadily to \(\infty \) as \(x \) tends to zero.

2. \(\mathcal{S}_{0} g(x) \, dx \) is convergent.

Let \(|f(x)| \leq g(x) \), \(0 < x \leq r \). Let \(1/Mn \leq \xi_1^{(n)} \leq 1/n \) (\(M \geq 1 \) and fixed), and \((k-1)/n \leq \xi_k^{(n)} \leq k/n \) (\(k = 2, 3, \ldots, n \)). Let the pattern \(P \) be characterized by the dyadic number

\[t = 0.\alpha_1\alpha_2\alpha_3 \cdots \alpha_n \cdots (2), \]

such that
1951] PATTERN INTEGRATION

\[\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \alpha_k = \alpha. \]

Then,

\[(P) \int_0^1 f(x) \, dx = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \alpha_k f(\xi_k) = \alpha \int_0^1 f(x) \, dx. \]

Since the proof is similar to that of Theorem 3.1, it will be omitted.
It is of interest to note that if one chooses

\[f(x) = \frac{1}{x} \cos \frac{1}{x}, \]

then \(\int_0^1 f(x) \, dx \) converges, but

\[(4.1) \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f(\xi_k) \]

fails to exist.

Define

\[A_n = \frac{1}{n} f(\frac{1}{Mn}) + \frac{1}{n} \sum_{k=2}^{n} f(\frac{k-1}{n}) \quad (M \geq 1 \text{ and fixed}), \]

\[B_n = \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n}). \]

Then \(A_n - B_n = (1/n) \{ f(1/Mn) - f(1) \} \). If (4.1) exists,

\[\lim_{n \to \infty} M \frac{1}{Mn} f(\frac{1}{Mn}) = 0, \]

which is certainly not the case when \(f(x) = (1/x) \cos (1/x) \).

BIBLIOGRAPHY

MICHIGAN STATE COLLEGE