AN EMBEDDING OF PI-RINGS

A. S. AMITSUR

1. Introduction. It is well known that a commutative ring which has no nonzero nilpotent ideals is isomorphic to a subring of a complete direct sum of commutative fields (McCoy [1]). In this note, this fact is generalised to rings which satisfy a polynomial identity (PI-rings). We show that every PI-ring which has no nilpotent ideals is isomorphic to a subring of a complete direct sum of central simple algebras whose order over their centre is bounded. As a consequence we prove that these rings are subrings of matrix rings over commutative rings. This implies an extension of a result of [2] concerning the minimal identity of a simple algebra. We prove that for a PI-ring which has no nonzero nilpotent ideals, the standard identity \(S_d(x) = 0 \), where \(d \) is an even integer, is the unique (up to a numerical factor) minimal identity which is linear in each of its indeterminates. The term standard identity was ascribed in [2] to the polynomial identity:

\[
S_d(x) = S_d(x_1, \ldots, x_d) = \sum_{(i)} \pm x_{i_1} \cdots x_{i_d} = 0
\]

where the sum ranges over all permutations \((i)\) of \(d\) letters, and the sign is positive for even permutations and negative for odd permutations.

Notations. A polynomial identity of minimum degree satisfied by a PI-ring \(R\) will be called a minimal identity of \(R\). We shall refer to a polynomial identity which is linear and homogeneous in each of its indeterminates as a linear identity. We shall use the following three types of semi-simplicity: a ring \(R\) is said to be

(a) J-semi-simple, if \(R\) is semi-simple in the sense of Jacobson [3], that is, if the quasi-regular radical of \(R\) is zero.

(b) K-semi-simple, if \(R\) does not contain any nonzero nil ideals.

(c) A-semi-simple, if \(R\) has no nonzero nilpotent ideals.

2. The ring \(R[x]\). We denote by \(R[x]\) the ring of all polynomials in the commutative indeterminate \(x\) over \(R\). In this section we deal with properties of \(R[x]\) induced by \(R\).

Received by the editors January 4, 1951.

1 Numbers in brackets refer to the bibliography at the end of the paper.

2 Ideals will always mean two-sided ideal.

3 For definition of (complete) direct sums and of subdirect sums see, for example, [1, p. 121].
Lemma 1. Let P be a nonzero ideal in $R[x]$ and let $p(x) = a_0 + \cdots + a_n x^n$ ($a_n \neq 0$) be a polynomial of minimum degree in P. Then if $b \in R$ such that $a_n b = 0$ for some integer p, then $a_n^{-1} p(x) b = 0$.

Indeed, the coefficient of x^n in $a_n^{-1} p(x) b \in P$ is $a_1 b = 0$, that is, this polynomial is of lower degree than that of $p(x)$. Hence the minimality of the degree of $p(x)$ implies that $a_n^{-1} p(x) b = 0$.

Corollary. If $r(x) \in R[x]$ such that $a_n^\mu r(x) = 0$ for some integer μ, then $a_n^{\lambda} r(x) = 0$ for every integer $\lambda \geq \mu - 1$.

This follows immediately by the preceding lemma, since each of the coefficients of $r(x)$ satisfies the condition of that lemma.

We prove now the following fundamental lemma:

Lemma 2. If R is a K-semi-simple ring, then $R[x]$ is J-semi-simple.

Proof. Assume that $R[x]$ is not J-semi-simple. Denote by J_x the nonzero Jacobson’s radical of $R[x]$. It is readily verified that the totality of the coefficients of the highest power of the polynomials of J_x of degree n—where n is the minimal degree of the nonzero polynomials of J_x—constitute a nonzero ideal in R. The lemma will be proved if it is shown that this ideal is a nil ideal, that is, that if $p(x) = a_0 + a_1 x + \cdots + a_n x^n$ is a nonzero polynomial of minimum degree in J_x, then $a_n^\mu = 0$ for some integer μ.

To this end we consider the polynomial $p(x) x a_n$ (which belongs to J_x, since $p(x) \in J_x$ and $x a_n \in R[x]$) and its quasi-inverse $q(x)$. By Lemma 1 of [3] and Theorem 2 of [3] it follows that

\begin{align*}
(1) & \quad p(x) x a_n + q(x) + p(x) x a_n q(x) = 0, \\
(2) & \quad p(x) x a_n + q(x) + q(x) p(x) x a_n = 0.
\end{align*}

By (1) we obtain that $q(x) = xt(x)$, $t(x) \in R[x]$. Put $s(x) = p(x) a_n$. Then (1) implies that $x s(x) + xt(x) + x^2 s(x) t(x) = 0$. Hence,6

\begin{equation}
(3) \quad s(x) + t(x) + x s(x) t(x) = 0.
\end{equation}

Similarly, we obtain from (2) that

\begin{equation}
(4) \quad s(x) + t(x) + x t(x) s(x) = 0.
\end{equation}

Suppose $a_n^\mu t(x) \neq 0$ for every integer μ. Let ν be the minimal degree of the polynomials $a_n^\mu t(x)$. Write

4 If R is commutative, this lemma is a consequence of [7, Corollary 8.1].

5 If R does not possess a unit and $x \in R[x]$, we adopt the notation $xt(x)$ (similarly $t(x)x$) for the polynomial $x b_0 + \cdots + x^n b_n$, where $t(x) = b_0 + \cdots + x^n b_n$.

6 Since $xm(x) = 0$ if and only if $m(x) = 0$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
(5) \(t(x) = t_1(x) + x^{r+1}t_2(x) \),
where \(t_1(x) = b_0 + b_1x + \cdots + b_rx^r \). The minimality of \(\nu \) implies that

(6) \(a_n b_\nu \neq 0 \) for every integer \(\mu \),

and

(7) \(a_n^\mu t_2(x) = 0 \) for every \(\mu \) greater than some integer \(\pi \).

The polynomial \(s(x) = s(x)a_n \) is of minimum degree in \(J_x \), and its highest coefficient is \(a_n^\lambda \). Hence, since \(a_n^{\lambda+2}t_2(x) = 0 \) (for \(\mu \geq \pi \)), it follows by the corollary of Lemma 1 that

(8) \(a_n^\mu s(x)t_2(x) = 0 \) for every \(m \geq 2\pi \).

Substituting (5) into (3) and multiplying this equation on the left by \(s(x) \), where \(x = 2x \), we obtain, by (7) and (8),

\[
\lambda a_n^\lambda s(x) + \lambda a_n^\lambda t_2(x) + x\lambda a_n^\lambda s(x)t_1(x) = 0.
\]

The degree of both \(a_n^\lambda s(x) \) and \(a_n^\lambda t_2(x) \) is less than \(n+\nu+1 \), and the coefficient of \(x^{n+\nu+2} \) of \(x\lambda a_n^\lambda s(x)t_1(x) \) is \(a_n^\lambda b_\nu \). Hence \(a_n^\lambda b_\nu = 0 \). But this contradicts (6); hence our assumption that \(a_n^\mu t_2(x) \neq 0 \), for every integer \(\mu \), is false. Thus \(a_n^\mu t_2(x) = 0 \) for some integer \(\lambda \). Now multiplication of (4) on the left by \(a_n^\lambda \) yields \(a_n^\lambda s(x) = 0 \); hence \(a_n^{\lambda+2} = 0 \), q.e.d.

Lemma 3. If \(R \) is a PI-ring, then \(R[x] \) is also a PI-ring, and the totalities of the linear-identities of \(R \) and \(R[x] \), respectively, coincide.

The first part of the lemma follows from the fact that \(R \) satisfies a linear identity (Lemma 2 of [4]), and this identity is evidently satisfied by \(R[x] \). If we assume that the operators of \(R \), which are the coefficients of the identities of \(R \), were extended to operate on \(R[x] \) by defining \(\alpha(\sum a_n x^n) = \sum (\alpha a_n) x^n \), the rest of the lemma is readily verified.

The following lemma follows immediately:

Lemma 4. A necessary and sufficient condition that a subdirect sum of a set of PI-rings \(\{ Q_a \} \) satisfies an identity \(F(x_1, \cdots, x_m) = 0 \) is that each of the rings \(Q_a \) satisfies the identity \(F = 0 \).

We recall that a PI-ring \(R \) is said to be of degree \(d \) [5] if \(d \) is the minimal degree of the polynomial identities satisfied by \(R \).

Remark. It has been shown in [2] that a central simple algebra \(A \) of order \(n^2 \) over its centre is a PI-ring of degree \(2n \), and the minimal
linear-identity of A is the standard identity $S_{2n}(x) = 0$, uniquely determined up to a numerical factor. Evidently, A satisfies also the identities $S_n(x) = 0$ for every $m \geq 2n$.

We prove now:

Theorem 1. If R is a J-semi-simple PI-ring of degree d, then

1. $d = 2m$.
2. The ring R is a subdirect sum of a set of central simple algebras $\{A_a\}$ such that m^2 is the upper bound of the orders of these algebras over their centres.
3. The standard identity $S_d(x) = 0$ is the unique (up to a numerical factor) minimal linear-identity of R.

Proof. Since R is J-semi-simple, R is a subdirect sum of primitive rings $\{A_a\}$ (Theorem 28 of [3]), Lemma 4 implies that each A_a is a PI-ring of degree not greater than d. Hence, by Theorem 1 of [4] and by consequence 2 of [5] it follows that each A_a is a central simple algebra of order not greater than $[d/2]$. Let m^2 be the upper bound of the orders of the algebras A_a; then $m \leq [d/2]$. By the preceding remark it follows that each A_a satisfies the identity $S_{2m}(x) = 0$. Thus, Lemma 4 implies that this identity is satisfied, as well, by their subdirect sum R; hence, $d \leq 2m$. On the other hand, $2m \leq 2[d/2] \leq d$. Hence $m = [d/2]$ and $d = 2m$. This completes the proof of the first two parts of the theorem. Since the upper bound m^2 is achieved by some A_a, and the minimal identities of R, whose degree is $2m$, are also identities of this algebra, the proof of the third part of our theorem follows immediately by the preceding remark, that is, by Theorem 7 of [2].

We turn now to the main theorem of this paper:

Theorem 2. Let R be an A-semi-simple PI-ring of degree d, then

1. $d = 2m$.
2. The ring R is a subring of a complete direct sum of central simple algebras $\{A_a\}$ such that m^2 is the upper bound of the orders of these algebras over their centres.
3. The identity $S_d(x) = 0$ is the unique (up to a numerical factor) minimal linear-identity of R.

Proof. Since R is a PI-ring which is A-semi-simple, the corollary of Theorem 4 of [5] implies that R is also K-semi-simple; hence by Lemma 2 it follows that $R[x]$ is J-semi-simple.

In the light of Lemma 3, the application of the preceding theorem to the ring $R[x]$ yields the first and the third parts of the theorem.

\[\text{Compare with Remark 6 of [2].} \]
The rest of the theorem follows now immediately from the preceding theorem since R is a subring of $R[x]$ which is, by Lemma 3, a PI-ring of degree d.

Let $R[x]$ be a subdirect sum of the central simple algebras $\{A_a\}$. By Lemma 4 it follows that the set of the identities satisfied by every A coincides with the set of the identities of the complete direct sum $\sum A_a$ as well as with the totality of the identities of $R[x]$. Hence we obtain, by Lemma 3, the following corollary.

Corollary 1. The set of the linear identities of the PI-ring R is the same as the set of the linear identities of the complete direct sum $\sum A_a$.

Let $\{A_a\}$ be a set of central simple algebras of orders not greater than m^2. Then each of these algebras satisfies the identity $S_{2m}(x) = 0$. Lemma 3 implies, therefore, that the complete direct sum $\sum A_a$ satisfies the same identity $S_{2m}(x) = 0$. A combination of this fact and the preceding theorem yields:

Corollary 2. A necessary and sufficient condition for an A-semi-simple ring to satisfy a polynomial identity is that it be isomorphic to a subring of a complete direct sum of central simple algebras of bounded order.

Another immediate consequence of the preceding theorem is:

Corollary 3. Every PI-ring of odd degree contains nonzero nilpotent ideals.

Consider the ring R and the central simple algebras A_a of Theorem 2. Let F_a be a splitting field of the algebra A_a. Then A_a is isomorphic with a subring of the total matrix algebra F_{am} of order m^2 over F_a. The complete direct sum $\sum F_{am}$ of the matrix algebra $\{F_{am}\}$ contains, therefore, a subring isomorphic with the complete direct sum $\sum A_a$. Thus it follows by Theorem 2 that R is isomorphic with a subring of $\sum F_{am}$. It is readily verified that $\sum F_{am}$ is isomorphic with the total matrix ring F_m of order m^2 over the complete direct sum $F = \sum F_a$ of the fields $\{F_a\}$. Since F is a direct sum of fields, F is a commutative A-semi-simple ring. Hence, we obtain:

Theorem 3. If R is a PI-ring of degree d without nilpotent ideals, then $d = 2m$ and R is isomorphic with a subring of a total matrix ring of order m^2 over a commutative ring which does not contain nilpotent ideals.

This result has been pointed out to me by the referee.
Let R be a subring of a total matrix ring of order m^2 over a commutative ring. By the proof of [2, Theorem 1] it follows that R is a PI-ring which satisfies the identity $S_{2m}(x) = 0$. Hence, a combination of this fact and the preceding theorem yields:

Corollary. An A-semi-simple ring R is a PI-ring if and only if R is isomorphic with a subring of a total matrix ring over a commutative ring.

4. **Identities for PI-rings.** Denote by $N = N(R)$ the radical of the PI-ring R, that is, the join of all nilpotent ideals of R.

In this section we apply the preceding results to obtain identities satisfied by the quotient ring $R/N(R)$.

Let R be a PI-ring of degree d, and let $U(R)$ denote the lower radical of R. Since $R/U(R)$ is an A-semi-simple PI-ring, it follows by Theorem 2, that:

Theorem 4. If R is a PI-ring of degree d, and $U(R)$ is the lower radical of R, then $R/U(R)$ satisfies the identity $S_{2m}(x) = 0$, where $2m \leq d$.

Theorem 5. Let R be a PI-ring of degree d such that its radical $N(R)$ is a nilpotent ideal of index not greater than ρ, then S satisfies the identity

$$\prod_{i=1}^\rho S(x_{i_1}, \ldots, x_{i_\rho}) = 0. \tag{9}$$

Proof. The condition of the theorem implies that $U(R) = N(R)$. Hence, by the preceding theorem, $R/N(R)$ satisfies each of the identities $S(x_{i_1}, \ldots, x_{i_\rho}) = 0$. Since $N(R)\rho = 0$, it is readily seen that R satisfies the identity (9).

By Theorem 2 of [6] it follows that the radical of the quotient ring $R/N(R)$, where R is a PI-ring of degree d, is a nilpotent ideal of index not greater than $[d/2]$. Hence we have the following corollary.

Corollary. If R is a PI-ring of degree d, then $R/N(R)$ satisfies the identity $\prod_{i=1}^{[d/2]} S(x_{i_1}, \ldots, x_{i_\rho}) = 0$.

In a process similar to that of the Laplace expansion of determinants one can readily prove that

$$S_n(x_1, \ldots, x_n) = \sum \pm S_k(x_{i_1}, \ldots, x_{i_k}) S_{n-k}(x_{i_{k+1}}, \ldots, x_{i_n})$$

where the sum ranges over all $C_{n,k}$ different selections of k letters i_1, \ldots, i_k out of n letters, and where i_{k+1}, \ldots, i_{n} denotes the complement of the set i_1, \ldots, i_k. This readily implies that the standard

* Compare with Theorem 9 and its remark of [2].
identity $S_{pq}(x) = 0$ can be expressed as a sum of a set of q products of standard identities each of which is of degree p. Hence by the preceding corollary it follows that:

Theorem 6. If R is a PI-ring of degree d, then $R/N(R)$ satisfies the standard identity $S_p(x) = 0$, where $p = d\lfloor d/2 \rfloor$.

Bibliography

Hebrew University