CERTAIN CONGRUENCES ON QUASIGROUPS

H. A. THURSTON

1. Using the ideas of [1],1 we define a lattice-isomorphism between the reversible congruences on a quasigroup and certain congruences on its group of translations. This may be used to get certain properties of the quasigroup congruences from those of the translation-group congruences; for example, it gives a new proof that reversible congruences on a quasigroup are permutable (a proof of this has been given in [3]).

NOTATION. A relation θ in a set S is a set of ordered 2-sets of elements of S. If $(a, b) \in \theta$, we say “a is in the relation θ to b”; the shorter notation $ab\theta$ will sometimes be used for this. For example, a mapping $x \rightarrow x\theta$ may be taken to be the set of all $(x, x\theta)$ and is then a relation in this sense.

θ^{-1} is the set of all (a, b) for which $b\theta a$.

$\theta\phi$ is the set of all (a, b) for which $ab\phi b$ for some c.

Clearly θ^{-1} and $\theta\phi$ are relations in S if θ and ϕ are.

If q is an equivalence (that is, if $q^{-1} = qq = q$), then aq is the set of all elements in the relation q to a.

2. Given a quasigroup whose set of elements is S it is possible to give definitions2 of two operations / and \:

a/b is the x for which $x \cdot b = a$.

$a\backslash b$ is the x for which $ax = b$.

Clearly

(1) $$(a/b) \cdot b = a, \quad a \cdot (a\backslash b) = b, \quad (a/b)/b = a, \quad a\backslash (a \cdot b) = b.$$

On the other hand, if we have an algebra E whose set of elements is S, whose operations are \cdot, $/$, and \backslash, and for which (1) is true, then the algebra S with the operation \cdot and elements S is a quasigroup. E is equationally defined: it might possibly be named an equasigroup.

3. DEFINITION. A congruence q on a quasigroup is reversible if (i) aqb whenever $acqbc$ and (ii) $aq\phi$ whenever $caqcb$. Clearly a congruence on S is reversible if and only if it is a congruence on E. Equally clearly, S/q is a quasigroup under the Kronecker operation \cdot if and only if q is reversible. (The reversible property is needed for cancellation to be possible.)

Received by the editors November 6, 1950 and, in revised form, February 27, 1951.

1 Numbers in brackets refer to the bibliography at the end of the paper.

2 The notation is from [2].
4. Definitions. ρ_a is the mapping $x \to x \cdot a$, and λ_a is $x \to a \cdot x$. The translator, Σ, of S (or of E) is the group generated by all ρ_a and λ_a for all a of S, and is a permutation group on S.

5. Now we give a relation between congruences on E and congruences on Σ. Clearly an equivalence q on S is a congruence on E if and only if $x\sigma y \equiv q$ whenever $x\gamma y$ and $\sigma \in \Sigma$; that is, if and only if $\sigma^{-1}q\sigma \leq q$ for every σ of Σ. From now on the letter q will be used only for congruences on E.

Definition. q^t is the relation in Σ for which $\theta q^t \phi$ if and only if $\theta^{-1}q\sigma < q$. If $\sigma \in \Sigma$, then $x\gamma (x\sigma)y$ is a mapping, ξ, say, of S/γ into S/γ. For if $x\gamma y$, then $x\gamma y$. Therefore $x\sigma y \equiv q$ and so $x\sigma y \equiv y\sigma q$. The mapping $\sigma \to \xi$ is a homomorphism (that is, $\sigma \tau \to \xi \tau$) and q^t is its kernel. Therefore q^t is a congruence on Σ.

Note. Clearly $q^t \supseteq p^t$ if $q \supseteq p$.

6. From now on the letter p will be used only for congruences on Σ.

Definition. p^t is $\cup \theta^{-1}\phi$ (over all θ, ϕ for which $6p$).

It is not hard to see that p^t is a congruence on E. For (i) clearly $p^t = (p^t)^{-1}$. (ii) Let $(a, b) \in (p^t)^2$. Then, for some c, $a \rho_t c \rho b$. Therefore $a\theta^{-1}\phi c$ and $c \psi^{-1}b$, where $\theta \rho b$ and $\psi \rho c$. Then $a\theta^{-1} \phi = c = b\chi^{-1} \psi$ and so $(a, b) \in \theta^{-1}\phi \psi^{-1} \chi = (\theta^{-1}\Phi)(\psi^{-1} \chi)$. But $\phi^{-1} \psi \rho \phi^{-1} = 1 = \psi^{-1} \rho \rho \psi^{-1} \chi$. Therefore $a\rho b$ and so $(p^t)^2 \subseteq p^t$. (iii) Let $(a, b) \in \sigma^{-1}p^t \sigma$ where $\sigma \in \Sigma$. Then

\[(a, b) \in \sigma^{-1}p^t \sigma \quad (\text{where } \theta \rho \phi) \]
\[= (\sigma \theta)^{-1}(\phi \sigma) \quad (\text{where } (\theta \rho \phi)(\phi \sigma)) \]
\[\subseteq p^t. \]

Note. Clearly $p^t \supseteq q^t$ if $p \supseteq q$.

7. $p \supseteq q^t$ if and only if $p^t \subseteq q$. For, by the definition of q^t, $p \subseteq q^t$ if and only if (i) $\theta^{-1}q \subseteq q$ whenever $\theta \rho b$. And (i) is true, by the definition of p^t, if and only if $p^t \subseteq q$. Then if $p = q$ we have $p^t \subseteq q$, that is $q^t \subseteq q$. On the other hand, if $a \in b$, let u be any element of S and put $a = u\lambda_a$, $b = u\lambda_a$. Then $v \in w$ (because q is reversible), and so, for any x of S, $x\lambda_a \rho x\lambda_a$. Therefore $\lambda_a^{-1} \lambda_a \subseteq q$, and so $\lambda_a \rho \lambda_a$. But $(a, b) = (u\lambda_a, u\lambda_a) \rho \lambda_a \subseteq \lambda_a^{-1} \lambda_a$. Therefore $a \in b$. Therefore $q^t \supseteq q$ and so $q = q^t$. Therefore τ is a one-to-one mapping of the set of all congruences on E into the set of congruences on Σ, and $\tau = (\tau)^{-1}$. By notes 5 and 6, this mapping is an isomorphism between the lattice of congruences on E and a sublattice of the lattice of congruences on Σ.

8. Any two congruences on E are permutable. Let p and r be any
two congruences on \mathcal{E}. Any congruence on a group is given by a normal subgroup: let the congruences \mathbf{p} and \mathbf{r} be given by subgroups Π and Φ. Then, for every a of S, $a\mathbf{p} = a\Pi$. For if $b \in a\mathbf{p}$, let $u, v,$ and w be as in §7. Then $b = a\lambda_v^{-1}\lambda_u$ where $\lambda_v^{-1}\lambda_u \in \Pi$. Therefore $a\mathbf{p} \subseteq a\Pi$. On the other hand, if $b \in a\Pi$, then $b = a\theta$ where $\theta \in \Pi$ and so $\theta \mathbf{p}^\dagger$. Then $a\theta \mathbf{p}a$; that is, $b\mathbf{p}a$, and so $b \in a\mathbf{p}$. Therefore $a\Pi \subseteq a\mathbf{p}$, and so $a\Pi = a\mathbf{p}$. In the same way, $a\mathbf{r} = a\mathbf{r}$.

Now, if $a\mathbf{p}b$, then for some c, $a \in c\mathbf{p} = c\Pi$ and $c \in b\mathbf{r} = b\Phi$. Therefore $a \in b\Pi = b\Phi$. We may now let $a = b\theta \phi$ where $\theta \in \Pi$ and $\phi \in \Phi$. Then $a \mathbf{r} b\theta$. But $b\mathbf{p} b\theta$. Therefore $a \mathbf{r} b$. Therefore $a \mathbf{p} b$. Therefore $a \mathbf{p} \subseteq a \mathbf{r}$; that is, \mathbf{p} and \mathbf{r} are permutative.

9. An important point about this is that proofs have been given (for example, in [4, pp. 87–89]) of the Schreier-Zassenhaus theorem for algebras all of whose congruences are permutative and which have a one-element subalgebra. An equasigroup has not, in general, a one-element subalgebra, but the theorem is true in this form:

If E, A_1, \ldots, A_m and E, B_1, \ldots, B_n are normal series of an equasigroup E, and if $A_m \cap B_n \neq \emptyset$, then the series have isomorphic refinements.

BIBLIOGRAPHY

UNIVERSITY OF BRISTOL