LINEAR TRANSFORMATIONS ON OR ONTO A BANACH SPACE

H. D. BLOCK

We investigate here a simple property of linear transformations which are not necessarily bounded or closed or one-to-one, but whose domain or range is all of a Banach space.

Theorem 1. Let T be a linear transformation from (all of) a Banach space \mathcal{X} onto a normed vector space Y. Then there is a number $m > 0$ such that for any $x \in \mathcal{X}$ there exists a sequence $x_n \rightarrow x$ such that $\|Tx_n\| \leq m\|x\|$ and $\{Tx_n\}$ converges in the sense of Cauchy.

Proof. Let C_n be the set of all $x \in \mathcal{X}$ such that $\|Tx\| \leq n$ ($n = 1, 2, 3, \ldots$). Then $\mathcal{X} = \bigcup_{n=1}^{\infty} C_n$. In virtue of the Baire category principle there is an integer k such that C_k contains a closed sphere, S, whose center and radius we denote by x_0 and r, respectively. Let $\|Tx_0\| = b$. Thus for each z such that $\|z - x_0\| \leq r$ there exists a sequence $z_n \rightarrow z$ with $\|Tz_n\| \leq k$. Take $m = 2(k + b)/r$.

Now let $x \in \mathcal{X}$ be given. It suffices to consider $x \neq 0$, for if $x = 0$, the theorem is obvious if we use the sequence $x_n = 0$. Let $z = x_0 + rx/\|x\|$. Then $z_n \rightarrow z$ with $\|Tz_n\| \leq k$. Let $x_n = (\|x\|/r)(z_n - x_0)$. Then $x_n \rightarrow x$ and $\|Tx_n\| \leq ((k + b)/r)\|x\| = (m/2)\|x\|$. Now we shall construct a sequence $\{x_n\}$ such that $\{Tx_n\}$ is, in addition, Cauchy convergent. For this we use the following lemma.

Lemma. For a given $x \in \mathcal{X}$, $x' \in \mathcal{X}$, there exists a sequence $u_n \rightarrow x$ with $\|Tx' - Tu_n\| \leq (m/2)\|x - x'\|$.

Proof. Applying the result already proved to the element $x - x'$ we have $x_n' \rightarrow x - x'$ with $\|Tx_n'\| \leq (m/2)\|x - x'\|$. Let $u_n = x_n' + x_n''$. Then $u_n \rightarrow x$ and $\|Tu_n - Tx\| = \|Tx_n\| \leq (m/2)\|x - x'\|$, as asserted.

To complete the proof of the theorem take n_1 large enough so that $\|x - x_n'\| \leq \|x\|/2$ and $\|Tx_n'\| \leq (m/2)\|x\|$. Let $x_1 = x_n'$. By the lemma, $u_n^{(1)} \rightarrow x$ with $\|Tx_1 - Tu_n^{(1)}\| \leq (m/4)\|x\|$. Let n_2 be large enough so that $\|u_n^{(1)} - x\| \leq \|x\|/2^2$ and take $x_2 = u_n^{(1)}$. Again by the lemma, there exists $u_n^{(2)} \rightarrow x$ with $\|Tx_2 - Tu_n^{(2)}\| \leq m\|x\|/2^3$. Take n_3 large enough so that $\|u_n^{(2)} - x\| \leq (m/2^3)\|x\|$ and let $x_3 = u_n^{(2)}$. Continuing in this manner we have

$$\|Tx\| \leq \frac{m}{2} \|x\|,$$

Received by the editors May 10, 1951.
Thus \(x_n \to x \) and for \(p > q \geq 1 \):
\[
\| T x_p - T x_q \| = \| T x_p - T x_{p-1} + T x_{p-1} - \cdots + T x_{q+1} - T x_q \| \leq m \| x \| \left(\frac{1}{2^{q+1}} + \cdots + \frac{1}{2^p} \right) \leq m \| x \| / 2^q,
\]
which proves that the \(\{ T x_n \} \) converges in the sense of Cauchy. Finally
\[
\| T x_n \| = \| T x_n - T x_{n-1} + T x_{n-1} - \cdots - T x_1 + T x_1 \| \\
\leq \| T x_n - T x_{n-1} \| + \cdots + \| T x_2 - T x_1 \| + \| T x_1 \| \\
\leq m \| x \| \left(\frac{1}{2^n} + \cdots + \frac{1}{2^q} \right) + \frac{m}{2} \| x \| \leq m \| x \|.
\]

It might be remarked that the closed graph theorem is an immediate corollary of this theorem (that is, if \(T \) is everywhere defined on a Banach space, then it is closed if and only if it is bounded). A further corollary is the fact that if \(T \) is everywhere defined and not closed, then for each \(x \in X \) there exist three sequences \(x_n^{(1)} \to x \), \(x_n^{(2)} \to x \), \(x_n^{(3)} \to x \) with \(T x_n^{(1)} \to y \), \(T x_n^{(2)} \to y \), \(T x_n^{(3)} \to y \) with \(\| y \| \leq m \| x \| \), where \(m \) is independent of \(x \).

Theorem 2. Let \(T \) be a linear transformation from a normed vector space \(X \) onto (all of) a Banach space \(Y \). Then there exists a number \(m > 0 \) such that for any \(y \in Y \), there exists a sequence \(y_n \to y \) with \(y_n = T x_n \), \(\| x_n \| \leq m \| y \| \), and \(\{ x_n \} \) convergent in the sense of Cauchy.

Proof. The method is entirely analogous to that of Theorem 1 but we give the details. Let \(C_n \) be the set of all \(y \in Y \) such that \(y = T x \) with \(\| x \| \leq n \) \((n = 1, 2, 3, \ldots)\). Then \(Y = \sum_{n=1}^{\infty} C_n \). Hence there exists an integer \(k \) such that \(C_k \) contains a sphere whose center and radius we denote by \(y_0 \) and \(r \) respectively. Say \(y_0 = T x_0 \), with \(\| x_0 \| = b \). Let \(m = 2(b + k)/r \). For any \(z \in Y \) such that \(\| z - y_0 \| \leq r \) there exists \(z_n \to z \) with \(z_n = T \xi_n \) and \(\| \xi_n \| \leq k \). Let \(y \in Y \) be given. Clearly it suffices to consider \(y \neq 0 \). Let \(z = y_0 + (r/\| y \|) \). Then the \(z_n \) described above exists. Let \(y_n' = (\| y \|/r)(z_n - y_0) \). Then \(y_n' \to y \), \(y_n' = T x_n' \) (where \(x_n' = (\| y \|/r)(\xi_n - x_0) \), and \(\| x_n' \| \leq ((k + b)/r) \| y \| = (m/2) \| y \| \).

Now we shall construct a sequence \(\{ y_n \} \) such that \(\{ y_n \} \) is, in
addition, Cauchy convergent. Again we use a lemma.

Lemma. For a given \(y \in Y, \ y' = T x' \in Y \) there exists a sequence \(v_n \to y \) with \(v_n = T u_n \) and \(\| u_n - x' \| \leq (m/2) \| y - y' \| \).

Proof. Applying the result already established to the element \(y - y' \), we have \(y'' = y - y' \), \(y'' = T x'' \), \(\| x'' \| \leq (m/2) \| y - y' \| \). Set \(v_n = y' + y'' \). Then \(v_n \to y \), \(v_n = T u_n \) (with \(u_n = x' + x'' \)), and \(\| u_n - x' \| = \| x'' \| \leq (m/2) \| y - y' \| \), as asserted. To complete the proof of the theorem select \(n_1 \) large enough so that \(\| y'_{n_1} - y \| \leq \| y \| /2 \). Let \(y'_{n_1} = y_1, \ x'_{n_1} = x_1. \) Then \(y_1 = T x_1, \| x_1 \| \leq (m/2) \| y \|. \) Take \(n_2 \) large enough (by the lemma) so that \(\| v_{n_2} - y \| \leq \| y \| /4, \ v_{n_2} = T u_{n_2}, \) and \(\| u_{n_2} - x_1 \| \leq (m/2) \| y - y_1 \| \leq (m/4) \| y \|. \) Let \(v_{n_2} = y_2, \ u_{n_2} = x_2. \) Take \(n_3 \) large enough so that \(\| v_{n_3} - y \| \leq \| y \| /2^2, \ v_{n_3} = T u_{n_3}, \| u_{n_3} - x_2 \| \leq (m/2) \| y - y_1 \| \leq (m/2^2) \| y \|. \) Let \(v_{n_3} = y_3, \ u_{n_3} = x_3. \) Continuing in this manner we find a sequence \(y_n = T x_n, \| y_n - y \| \leq \| y \| /2^n, \| x_n - x_{n-1} \| \leq (m/2^n) \| y \|. \) Thus \(y_n \to y. \) For \(p > q \geq 1, \)

\[
\| x_p - x_q \| = \left\| x_p - x_{p-1} + x_{p-1} - \cdots + x_{q+1} - x_q \right\| \\
\leq m \| y \| \left(\frac{1}{2^p} + \cdots + \frac{1}{2^{q+1}} \right) \leq \frac{m \| y \|}{2^q}
\]

so that \(\{ x_n \} \) converges in the sense of Cauchy. Finally

\[
\| x_n \| = \left\| x_n - x_{n-1} + x_{n-1} - \cdots + x_2 - x_1 + x_1 \right\| \\
\leq m \| y \| \left(\frac{1}{2^n} + \cdots + \frac{1}{2^2} + \frac{1}{2} \right) \leq m \| y \|.
\]