CONTINUITY OF AREA FOR HARMONIC SURFACES WITH BOUNDARIES OF UNIFORMLY BOUNDED LENGTH

K. H. CARLSON AND L. C. YOUNG

The object of this note is to supplement a paper by Young [1], On the isoperimetric ratio for a harmonic surface, by answering in the affirmative a question raised by Morse and Tompkins [2]. Continuity of area as the harmonic surface S^* shrinks to a point is dealt with by Young by means of his main inequality. Here the same machinery deals with the more general case in which S^* approximates another surface S.

In what follows $r = |u + iv|$, D is the disc $r \leq 1$, R its rim, and, in correspondence with a real number t where $0 < t < 1$, D^t is the concentric disc $r \leq 1 - t$ and R^t is the annulus $1 - t \leq r \leq 1$. We shall divide R^t into n parts λ in which it is met by the lines amp $(u + iv) = 2\pi k/n$, where $-n/2 < k \leq n/2$. The suffixes t, or k, n, t in D^t and R^t, or in σ and λ, are understood to have been dropped.

S and S^* denote continuous vector functions $x(u, v)$ and $x^*(u, v)$ on D and it is assumed that $x^*(u, v)$ is the harmonic extension to D of a continuous vector function on R. We shall assume further that $(1 - r)|x_u + ix_v|$ is bounded in D, and we denote by b its supremum; b^* is similarly defined in terms of S^* [and is finite since $x^*(u, v)$ is harmonic].

We write $d(S, S^*)$ and $\rho(S, S^*)$ respectively for the suprema in D of the expressions $|x(u, v) - x^*(u, v)|$ and $(1 - r)|x_u - x^*_u + i(x_v - x^*_v)|$. Moreover, given any subset E of D whose boundary is a simple closed curve C, we write $\delta(E)$ for the diameter of the set of values $x(E)$ taken by $x(u, v)$ in E, and $A(E), L(E)$ respectively for the area and boundary-length defined by the expressions

$$\int \int_E \left\{ x_u^2 + x_v^2 - (x_u^* + x_v^*)^2 \right\}^{1/2} dudv, \quad \int_C |dx| ;$$

$\delta^*(E), A^*(E), L^*(E)$ denote the similar quantities for S^* and the argument E is omitted when $E = D$.

Lemma 1. For the sum of the angles α subtended at $\cos \gamma + isin \gamma$ by the n segments λ, we have the estimate $\sum_{\alpha < \pi}$ provided that $t \leq \eta(n)$ where $\eta(n) = \left[n(1 + \log n) \right]^{-1}$.

Received by the editors January 22, 1951.

Numbers in brackets refer to the references at the end of the paper.
Proof. We first estimate the angle α, subtended by the single segment $\lambda = \overline{AB}$ on which $\text{amp} (u + iv) = \theta$, in terms of $\beta = |\theta - \gamma| / 2$ where $\theta - \gamma$ is reduced mod 2π so that $2\beta \leq \pi$. The diameter AC containing AB subtends a right angle at $M = \cos \gamma + i \sin \gamma$ and we have two expressions for the sine of the angle ϕ subtended by MC at B:

$$2 \sin \beta \sin \alpha / t = \frac{AM}{MC} \sin \alpha / AB = \sin \phi$$

$$= \frac{MC \cos \alpha / BC}{2 \cos \beta \cos \alpha / (2 - t)}.$$

Hence if $\beta \neq 0$ we find that $\alpha < t \cot \beta / (2 - t) < t \cot \beta < t / \beta$; moreover, in any case, $\alpha \leq \pi / 2$.

To establish our lemma, in which we may suppose by circular symmetry that $0 \leq \gamma \leq \pi / n$, we have, on denoting by \sum' and \sum'' sums for $-n / 2 < k < 0$ and $0 < k \leq n / 2$,

$$\sum \alpha < \frac{\pi}{2} + (\sum' + \sum'') \frac{t}{\beta} = \frac{\pi}{2} + t \sum' \left(\frac{\gamma}{2} - \frac{k \pi}{n} \right)^{-1}$$

$$+ t \sum'' \left(\frac{k \pi}{n} - \frac{\gamma}{2} \right)^{-1}$$

$$\leq \frac{\pi}{2} + t \sum' \left(- \frac{k \pi}{n} \right)^{-1} + t \sum'' \left[\left(k - \frac{1}{2} \right) \frac{\pi}{n} \right]^{-1}$$

$$\leq \frac{\pi}{2} + \frac{2nt}{\pi} \left\{ 1 + \frac{1}{2} + \cdots + \frac{1}{n - 1} \right\}$$

$$< \frac{\pi}{2} + \frac{2t}{\pi} n(1 + \log n) < \frac{\pi}{2} \left[1 + \ln(1 + \log n) \right] \leq \pi.$$

Lemma 2. For every S^* the inequality $t \leq \eta(n)$ implies $\sum L^*(\sigma) \leq 5L^*.$

Proof. Let $\Lambda = \sum \int_A |dx^*|$. By Young's variant [1, p. 400, (3.2)] of F. Carlson's inequality [3], we have, since x^* is harmonic,

$$\Lambda \leq \pi^{-1} \int_R \left(\sum \alpha \right) |dx^*| < \int_R |dx^*| = L^*,$$

provided that $t \leq \eta(n)$. Our assertion now follows from the relation $\sum L^*(\sigma) = 2\Lambda + L^* + L^*(D^-)$ where the last term on the right cannot exceed $2L^*$ (by [1, p. 405 middle of page]; actually $L^*(D^-) \leq L^*$).

Lemma 3. There is an absolute constant K and, given S and $\epsilon > 0$, a number $t = t_0(\epsilon, S) < \epsilon$, such that the inequality $d(S, S^*) < \epsilon$ implies $A^*(R^+) \leq \epsilon KL^*.$

Proof. By uniform continuity of $x(u, v)$, there exist $n = n(\epsilon, S)$ and $t = t_0(\epsilon, S) \leq \eta(n)$, so that $\delta(\sigma) < \epsilon$. This evidently insures $\delta^*(\sigma)$
<3\varepsilon$, while by Lemma 2, $\sum L^*(\sigma) \leq 5L^*$. Consequently (applying Young’s isoperimetric inequality $A \leq KLD$ of [1] to the harmonic surface $x^*(u, v)$ on σ and summing),

$$A^*(R^+) = \sum A^*(\sigma) \leq K \sum L^*(\sigma) \delta^*(\sigma) \leq 15\varepsilon KL^*,$$

which is of the asserted form, with 15ε for K.

Lemma 4. There is an absolute constant K so that the inequality $\rho(S, S^*) < \varepsilon$ implies $|A(D^-) - A^*(D^-)| \leq K\varepsilon(b + b^*)^{3/2}$.

Proof. Since the quantities $|x_u + ix\|/\varepsilon$, $|x^* + ix^*|/\varepsilon$, and $|(x_u - x^*_u) + i(x_u - x^*_u)|/\rho(S, S^*)$ do not exceed $(1 - r)^{-1}$, the expression $U = (x^*_u - x^*_u)^2$ differs from the corresponding expression U^* by at most $K^2(1 - r)^{-4}\rho(S, S^*)(b + b^*)^3$ where K is an absolute constant. Since

$$|U^{1/2} - U^*^{1/2}| \leq \left\{ \frac{|U^{1/2} - U^*^{1/2}|}{(U^{1/2} + U^*^{1/2})^{1/2}} \right\}^{1/2} = |U - U^*|^{1/2},$$

it follows that

$$|A(D^-) - A^*(D^-)| \leq \int \int_{D^-} |U - U^*|^{1/2} dudv$$

$$= 2\pi K\varepsilon(b + b^*)^{3/2} \int_{0}^{1} (1 - r)^{-2} r dr$$

which implies our assertion, because

$$\int (1 - r)^{-2} r dr \leq \int (1 - r)^{-2} r dr = t^{-1} - 1 < t^{-1}.$$

Lemma 5. Given S and the constant N and given $\varepsilon > 0$, there exists $\varepsilon'' = \varepsilon''(S, N, \varepsilon') > 0$ such that the relations $\rho(S, S^*) + d(S, S^*) < \varepsilon''$, $L^* \leq N$, $A < \infty$ together imply $|A - A^*| < \varepsilon'$ for every harmonic S^*.

Proof. Clearly $\delta^* \leq L^*$ and by an inequality of Schwarz [1, p. 398, (2.3)] $b^* \leq 2b^*$. Moreover $b \leq b^* + \rho(S, S^*)$, so that $b < \infty$. We may therefore suppose $N \geq b$ without loss of generality (since b depends only on S) and we then have $b + b^* \leq 3N$.

Given $\varepsilon > 0$, we now determine $t = t(\varepsilon, S) < t_0(\varepsilon, S)$, where $t_0(\varepsilon, S)$ is defined as in Lemma 3, so that

$$A(R^+) < \varepsilon.$$
This is possible since A is finite. Then the inequality $\rho(S, S^*) + d(S, S^*) < t^4$ implies on one hand by Lemma 3 (since $t^4 < t < \varepsilon$)

$$A^*(R^+) \leq KN\varepsilon,$$

and on the other hand by Lemma 4

$$|A(D^-) - A^*(D^-)| < K\varepsilon(3N)^{3/2}.$$

Hence by addition the quantity

$$|A - A^*| = |A(R^+) - A^*(R^+) + \{A(D^-) - A^*(D^-)\}|$$

is less than $\varepsilon + KN\varepsilon + K\varepsilon(3N)^{3/2} = \varepsilon'$ provided our hypotheses are satisfied and $\varepsilon'' = t^4$ where $t = t(\varepsilon, S)$. This completes the proof.

Continuity Theorem. If S is harmonic and N fixed, then for harmonic S^* the relations $d(S, S^*) \to 0$ and $L^* \leq N$ imply $A^* \to A$.

Proof. By semi-continuity of area we may suppose $A < \infty$. It is now sufficient to apply Lemma 5 with $3\varepsilon''$ in place of ε'' since $\rho(S, S^*) \leq 2d(S, S^*)$ by the inequality of Schwarz already referred to.

The theorem just proved answers the question raised by Morse and Tompkins [2, p. 828]. We do not know, however, whether the result remains true if $d(S, S^*)$ is replaced by the Fréchet distance of the harmonic surfaces S and S^*.

References

3. F. Carlson, Arkiv för Matematik, Astronomi och Fysik vol. 29B (1943) no. 11.

University of Wisconsin