A THEOREM ON DIMENSION

M. L. CURTIS AND G. S. YOUNG

Every \(n \)-dimensional separable metric space can be homeomorphically imbedded in the closed \((2n+1)\)-cube \(I^{2n+1} \). This, of course, does not characterize \(n \)-dimensionality, for spaces of dimension greater than \(n \) can be imbedded homeomorphically in \(I^{2n+1} \). A theorem due to Hurewicz\(^1\) suggests that the existence of a more general kind of mapping into the \(n \)-cube \(I^n \) may characterize \(n \)-dimensionality for compact spaces. For compact spaces this theorem reduces to: If \(X, Y \) are compact and separable metric, \(f:X \to Y \) is continuous, and \(\dim X \geq \dim Y \), then there exists \(y \in Y \) such that \(\dim f^{-1}(y) \geq \dim X - \dim Y \). This suggests the possibility that if \(\dim X = \dim Y \), one may be able to modify the map \(f \) slightly to obtain a map \(g \), so that each \(g^{-1}(y) \) has dimension zero, or is light. While this is not true in general, we show that it is possible if \(\dim X = n \) and \(Y = I^n \).

Lemma 1. Let \(P^n \) be an \(n \)-polyhedron and \(I^n \) be the \(n \)-cube, both with given simplicial decompositions. If \(\psi:P^n \to I^n \) is simplicial and \(\delta > 0 \), then there exists a map \(\phi:P^n \to I^n \) such that:

1. For any \(x \in P^n \), \(\|\phi(x) - \psi(x)\| < \delta \).
2. For any \(y \in I^n \), \(\phi^{-1}(y) \) has at most one point in each (open) simplex of \(P^n \).

Proof. Let \(0 < \eta < \min (\delta/2, \xi/2) \) where \(\xi \) is the minimum diameter of the collection of \(n \)-simplexes of \(I^n \). For each vertex \(q \) in the decomposition of \(I^n \) let \(S^{n-1}(q) = \{ y \in I^n , \| y - q \| = \eta \} \). On each \(S^{n-1}(q) \) select \(N_q \) distinct points such that if \(q \) and \(q' \) are two vertices with \(q' \in \) the closure of the set \(St(q) \), then no \((n-1)\)-hyperplane determined by \(n \) of the selected points of \(S^{n-1}(q) \) coincides with an \((n-1)\)-hyperplane determined by \(n \) of the selected points of \(S^{n-1}(q') \).

Let \(\{ p_i \} \) denote the collection of vertices of \(P^n \). If \(\psi^{-1}(q) = \bigcup P_i \), then let \(\{ \phi'(p_i) \} \) be distinct points from the collection defined on \(S^{n-1}(q) \). This defines \(\phi' \) on all the vertices of \(P^n \), and, if \(\sigma_i \) is an \(l \)-simplex, then \(\phi' \) sends its vertices into \(l+1 \) independent points of \(I^n \). Extend \(\phi' \) linearly on each simplex of \(P^n \) to obtain a map \(\phi:P^n \to I^n \). It can be seen that \(\phi \) has the required properties.

Definition. A map \(f:X \to Y \) is said to be \(\epsilon \)-light provided that:
For any \(y \in Y \), each component of \(f^{-1}(y) \) has dia \(< \epsilon \).

\(^1\)Dimension theory, Hurewicz and Wallman, Princeton, 1948, Theorem VI, 7, p. 91.

Presented to the Society, April 28, 1951; received by the editors February 27, 1951.
Given two spaces X, Y and a sequence $\{\epsilon_i\} \to 0$. Let F_{ϵ_i} denote the set of all ϵ_i-light maps of X into Y. Then $\bigcap_i F_{\epsilon_i}$ is all light maps $X \to Y$.

Theorem. Let X be a compact metric space. Then $\dim X \leq n$ if and only if there exists a light map of X into I^n.

Proof. Necessity. Let F denote the function space of maps $f : X \to I^n$ with the uniform topology, and denote by F_{ϵ_i} the set of ϵ_i-light elements of F.

(a) For any $\epsilon > 0$, F_{ϵ_i} is open in F.

Suppose that $f \in F_{\epsilon_i}$ and $\{h_i\} \to f$ with each $h_i \in F - F_{\epsilon_i}$. Then for each i there is a point $y_i \in I^n$ and a component c_i of $h_i^{-1}(y_i)$ such that $\text{diam} c_i \leq \epsilon$. Let y be a limit point of $\{y_i\}$. Then $\{c_i\}$ contains a subsequence converging to a closed connected set C with $\text{diam} c \leq \epsilon$. Furthermore $C \subseteq f^{-1}(y)$, contradicting the assumption that $f \in F_{\epsilon_i}$.

(b) For any $\epsilon > 0$, F_{ϵ_i} is dense in F.

Let $h \in F$ and $\delta > 0$. We must find $f \in F_{\epsilon_i}$ such that for any $x \in X$, $\|f(x) - h(x)\| < \delta$.

Take a simplicial decomposition of I^n into simplexes of $\text{diam} < \delta/2$. If $\{q_i\}$ are the vertices, then $\{h^{-1}(\text{St}(q_i))\}$ is a covering of X by open sets. Take a covering V of X such that

1. V is a refinement of $\{h^{-1}(\text{St}(q_i))\}$,
2. Each $v \in V$ has $\text{diam} < \epsilon$,
3. Order $V \leq n + 1$.

Denote by $N(V)$ the nerve of V and by ξ a barycentric V-mapping $\xi : X \to N(V)$. Let $\{p_i\}$ be the collection of vertices of $N(V)$. Then the rule $\psi'(p_i) = \text{some } q_i$ such that $h(q_i) \subseteq \text{St}(q_i)$ defines a simplicial map $\psi' : N(V) \to I^n$. By the lemma we can find a map $\psi : N(V) \to I^n$ satisfying conditions (1) (with $\delta/2$) and (2). The combined map $f = \psi \xi$ has the property that $\|f(x) - h(x)\| < \delta$ for every $x \in X$; furthermore $f \in F_{\epsilon_i}$. For let C be a connected set in X such that $f(C)$ is a single point $y \in I^n$. Then $\xi(C)$ is a connected set in $N(V)$, but it must be contained $\psi^{-1}(y)$ which is totally disconnected. Thus $\xi(C)$ is a single point, and, since ξ is a barycentric V-mapping, this implies $\text{diam } C < \epsilon$.

(y) The function space F is complete so that we may apply a theorem of Baire stating that the intersection of a countable number of open dense sets of a complete space has an intersection which is dense in the space. Thus if $\{\epsilon_i\} \to 0$, then the collection of light maps of X into $I^n(= \bigcap_i F_{\epsilon_i})$ is dense in F. This completes the proof of the necessity.

Sufficiency. This follows from the theorem of Hurewicz mentioned in the introduction.

Remark 1. The condition in the theorem that X be compact is important. For if X is the set of points in the plane which have at least one coordinate a rational number, then $\dim X = 1$, but there is no light closed map of X into the real line, and, a fortiori, none into the unit interval.

Remark 2. It is clear that I^n could be replaced in the theorem by any n-manifold. This contrasts with the imbedding theorem, where there are n-dimensional sets that can be imbedded in manifolds of dimension less than $2n+1$, but cannot be imbedded in I^{2n}.

Added in proof. Our attention has been called to a paper by M. Katětov, On rings of continuous functions, Časopis pro Pěstování Matematiky a Fysiky vol. 75 (1950) pp. 1–16, Mathematical Reviews vol. 12 (1951) p. 119, which apparently contains several theorems closely related to our result, though not the same.