ON AN EQUIVALENT DEFINITION OF THE TRANSFINITE DIAMETER

PHILIP DAVIS AND HENRY POLLAK

Let
\[f(z) = a_0 + a_1/z + \cdots, \quad a > 0, \]
map the exterior of the unit circle \(C \) onto the exterior of a simply-connected domain \(B \). It is part of a general theory (see e.g. [3]) that the quantity \(1/a \) can be identified with the transfinite diameter of \(B \). In particular, let \(T_n(z) \) be the polynomial of degree \(n \) with leading coefficient 1 whose \(L^\infty \) norm over \(B \), i.e. the maximum of whose absolute value over \(B \), is minimum. Then
\[\lim_{n \to \infty} (M_n)^{1/n} = a. \]

The object of this paper is to show that the last result holds true in the case of domains with a Jordan boundary if we replace the minimal polynomials in the \(L^\infty \) metric by those in any \(L^p \) metric, \(p \geq 2 \). Let \(Q_n^{(p)}(z) \) be the polynomial minimizing
\[\left(\int_B |Q_n(z)|^p dxdy \right)^{1/p} \]
among all polynomials of degree \(n \) with leading coefficient 1, and let \(\lambda_n^{(p)} \) be the \(L^p \) norm of \(Q_n^{(p)}(z) \), i.e. the value of (2) for \(Q_n = Q_n^{(p)} \). Then \(\lim_{n \to \infty} (\lambda_n^{(p)})^{1/n} = a \). After a preliminary lemma substantially due to Carleman [2], we shall prove the result first for \(p = 2 \), and then for \(2 < p < \infty \).

LEMMA. Let \(B \) have an analytic boundary. Then \(\lim_{n \to \infty} (\lambda_n^{(p)})^{1/n} = a \).

PROOF. Since \(T_n(z) \) is a competing polynomial in the \(L^2 \) minimum problem,
\[(\lambda_n^{(2)})^2 \leq \int_B |T_n(z)|^2 dxdy \leq M_n^2 \cdot A, \]
where \(A \) is the area of \(B \), and
\[\lim_{n \to \infty} sup (\lambda_n^{(2)})^{1/n} \leq \lim_{n \to \infty} (M_n)^{1/n} = a. \]

On the other hand, since \(B \) has an analytic boundary, the function

Received by the editors May 11, 1951.
\[f(\xi) \text{ can be continued to be analytic and schlicht up to a circle } \gamma_{\xi}; \quad |\xi| = \rho_1 < 1. \] Let \(\rho_1 < \rho < 1 \) and let \(D \) be the annulus bounded by \(\gamma_{\rho} \) and \(\gamma_1 \); furthermore, let \(f(D) \) be its image in \(B \). Then

\[
\int \int_B |Q_n^{(2)}(z)|^2 \, dx \, dy \geq \int \int_{f(D)} |Q_n^{(2)}(z)|^2 \, dx \, dy
\]

(5)

\[
= \int \int_D |Q_n^{(2)}[f(\xi)]f'(\xi)|^2 \, d\xi \, d\eta.
\]

Now \(Q_n^{(2)}(\xi) = \zeta^n + \cdots + \), \(f(\xi) = a_1 + a_0 + a_1/\xi + \cdots \); hence

\[Q_n^{(2)}[f(\xi)]f'(\xi) = a_0 + 1 + \sum_{j=1}^{\infty} b_j \xi^{-j} \]

and

\[
(\lambda_n^{(2)})^2 = \int \int_D \left| a_0 + 1 + \sum_{j=1}^{\infty} b_j \xi^{-j} \right|^2 \, d\xi \, d\eta
\]

(6)

\[
= 2\pi a^{2n+2} \int_0^1 r^{2n+1} \, dr + 2\pi \sum_{j=1}^{\infty} b_j^2 \int_0^1 r^{2n-2j+1} \, dr
\]

\[
= \frac{\pi a^{2n+2}}{n+1} (1 - \rho^{2n+2}).
\]

Since \(\rho < 1 \), it follows that \(\rho^{2n+2} \to 0 \), and \(\liminf_{n \to \infty} (\lambda_n^{(2)})^2 \geq a \). By comparing (4) and (6) we see that \(\lim_{n \to \infty} (\lambda_n^{(2)})^2/n \) exists and equals \(a \).

Theorem 1. Let \(B \) be a simply-connected domain with a Jordan boundary. Then \(\lim_{n \to \infty} (\lambda_n^{(2)})^{1/n} \) exists and equals \(a \).

Proof. Let \(B \supset B' \). Then if \(Q_n^{(2)}(z) \) is the \(L^2 \) minimal polynomial over \(B \),

\[
[\lambda_n^{(2)}(B)]^2 = \int \int_B |Q_n(z)|^2 \, dx \, dy \geq \int \int_{B'} |Q_n(z)|^2 \, dx \, dy \geq [\lambda_n^{(2)}(B')]^2.
\]

Hence

\[
\limsup_{n \to \infty} [\lambda_n^{(2)}(B)]^{1/n} \leq \limsup_{n \to \infty} [\lambda_n^{(2)}(B')]^{1/n};
\]

the same is true for \(\liminf \) and \(\lim \) if it exists. Thus, we see that \(\limsup_{n \to \infty} [\lambda_n^{(2)}(B)]^{1/n} \) and \(\liminf_{n \to \infty} [\lambda_n^{(2)}(B)]^{1/n} \) are increasing set functions. Now an arbitrary domain can be approximated from the exterior by domains with analytic boundaries in such a way that the
respective $a(B)$'s are arbitrarily close to each other; one needs only to take level lines of the exterior mapping function. In the case of a domain with a Jordan boundary, it follows from the Carathéodory theory [1] that this is also true for interior approximation. Since the transfinite diameter is also an increasing set function, it follows by approximation that $\lim (\lambda_n^{(p)})^{1/n}$ exists and equals a in the case of an arbitrary Jordan domain.

Theorem 2. Let $Q_n^{(p)}(z)$ be the polynomial of degree n with leading coefficient 1 minimizing

$$\left(\int \int_B |Q_n(z)|^p dxdy \right)^{1/p}$$

and let $\lambda_n^{(p)}$ be the corresponding minimum value of (9). Then for any $p > 2$, $\lim_{n \to \infty} (\lambda_n^{(p)})^{1/n}$ exists and equals a.

Proof. For any $f(z) \in L^2$ and L^p, $p > 2$, we have

$$\left(\int \int_B |f(z)|^2 dxdy \right)^{1/2} \leq \left(\int \int_B |Q_n^{(p)}(z)|^p dxdy \right)^{1/p}.$$

Therefore

$$\lambda_n^{(2)} \leq \left(\int \int_B |Q_n^{(p)}(z)|^2 dxdy \right)^{1/2} \leq \left(\int \int_B |Q_n^{(p)}(z)|^p dxdy \right)^{1/p} = \lambda_n^{(p)}$$

and hence

$$a = \lim_{n \to \infty} (\lambda_n^{(2)})^{1/n} \leq \liminf_{n \to \infty} (\lambda_n^{(p)})^{1/n}.$$

On the other hand,

$$\lambda_n^{(p)} \leq \int \int_B \left| T_n(z) \right|^p dxdy \leq A [M_n]^p,$$

where A is the area of B. Hence

$$\limsup_{n \to \infty} (\lambda_n^{(p)})^{1/n} \leq \lim (M_n)^{1/n} = a.$$

Combining (11) and (12), we obtain that $\lim_{n \to \infty} (\lambda_n^{(p)})^{1/n}$ exists and equals a.

Bibliography

1. C. Carathéodory, *Untersuchungen ueber die konformen Abbildungen von festen*

Harvard University