COMPLEX STRUCTURES ON REAL BANACH SPACES

JEAN DIEUDONNÉ

1. Let E_0 be a topological vector space over the complex number field \mathbb{C}. The mapping $(\xi, x) \rightarrow \xi x$ is then continuous when one restricts ξ to take only real values. Hence, we have on E_0 a structure of topological vector space over the real number field \mathbb{R}. We shall denote by E that topological vector space. The homothetic mapping $x \rightarrow ix$ of E_0 onto itself is an automorphism u of the topological vector space E, such that $u^2(x) = -x$. Conversely, let E be a topological vector space over \mathbb{R}, and let u be an automorphism of E such that $u^2(x) = -x$. One can then define on E a structure of vector space over \mathbb{C}, by setting $(\lambda + i\mu)x = \lambda x + \mu u(x)$. The axioms of vector spaces are trivially verified, and the continuity of u insures that the mapping $(\xi, x) \rightarrow \xi x$ of $\mathbb{C} \times E$ into E is continuous. One defines thus a topological vector space E_0 over \mathbb{C}, from which the original space E can be derived as above.

When a topological vector space E over \mathbb{R} is given, the question naturally arises of the existence of an automorphism u of E such that $u^2(x) = -x$. It is well known that when E has finite dimension n, the necessary and sufficient condition for the existence of u is that n be an even number. In this note, we shall give an example of an infinite-dimensional Banach space E over \mathbb{R}, such that there exists no automorphism u of E with the required property.

2. When E is a Banach space over \mathbb{R}, and an automorphism u of E such that $u^2(x) = -x$ exists, the topology of the space E_0 (which is identical with the topology of E) can still be defined by a norm, for instance $\|x\|_0 = \sup_{\xi \in \mathbb{C}} \|e^{i\xi}x\|$ meaning the norm on E; for one has obviously $\|x\| \leq \|x\|_0 \leq (1 + \|u\|)\|x\|$. Let E' and E_0' be the dual spaces of E and E_0 respectively. E' is a Banach space over \mathbb{R} and E_0' a Banach space over \mathbb{C}. There is a well known natural mapping of E' onto E_0' which to every continuous linear form $v \in E'$ associates the continuous linear form $w = \phi(v)$ over E_0 such that $w(x) = v(x) - iv(ix)$. The inverse mapping $v = \psi(w)$ is such that $v(x) = \Re(w(x))$. As $\|w(x)\| \leq (1 + \|u\|)\|v\|\|x\|$, and $\|v(x)\| \leq \|w(x)\|$, it is clear that ϕ and ψ are continuous; ϕ is therefore an isomorphism of the topological vector space E' over \mathbb{R} onto the topological vector space E_0' over \mathbb{R}.

Now let E'' be the dual of the Banach space E' (over \mathbb{R}). Let E_0''
be the dual of the Banach space E'_0, when E'_0 is considered as a space over \mathbb{R}; and let E''_0 be the dual of the Banach space E'_0, when E'_0 is considered as a space over \mathbb{C}. The same argument as before yields a natural mapping ϕ' of E''_0 onto E''_0, which is an isomorphism for the structures of topological vector spaces over \mathbb{R} of these spaces. Moreover, the mapping which to any continuous linear form V over E' associates the continuous linear form $w \mapsto V(\psi(w))$ over E''_0 (considered as a space over \mathbb{R}) is again an isomorphism of E''_0 onto E''_0 (for the structures of topological spaces over \mathbb{R}). We thus get finally a natural isomorphism Φ of E''_0 onto E''_0, when both these spaces are considered as topological vector spaces over \mathbb{R}.

Moreover, there is a natural isomorphism $x \mapsto U_x$ of the Banach space E into the Banach space E''_0, such that $U_x(v) = v(x)$ for every $v \in E'$. Similarly, there is a natural isomorphism $x \mapsto U_x$ of the Banach space E_0 (over \mathbb{C}) into the Banach space E''_0 (over \mathbb{C}). For every $x \in E_0$, and every $w \in E'_0$, one has $U_x(\psi(w)) = \Re(w(x))$, and therefore, if $T(w) = U_x(\psi(w))$, and $W = \phi'(T)$, one has $W(w) = \Re(w(x)) - i\Im(w(ix)) = w(x) = U_0(w)$. In other words, $\Phi(U_x) = U_0$ for every $x \in E$, which means that under the isomorphism Φ, E (considered as imbedded in E''_0) is transformed into E_0 (considered as imbedded in E''_0).

3. Now R. C. James has given recently an example of a Banach space E over \mathbb{R}, such that E''_0/E has dimension one over \mathbb{R}. Suppose there existed an automorphism u of E such that $u(x) = -x$; it would define a Banach space E_0 over \mathbb{C}, and it follows from §2 that E''_0/E_0 would have dimension one over \mathbb{R}. But E''_0/E_0 is a vector space over \mathbb{C} which is not reduced to 0, and as such its dimension over \mathbb{R} is at least 2. We thus reach a contradiction, which proves our contention.

The same example exhibits another interesting feature concerning the problem we are considering. Namely, there exists an increasing sequence (L_n) of closed subspaces of E, whose union M is dense in E, and a (noncontinuous) one-to-one linear mapping u of M onto itself, such that $u^2(x) = -x$, and that u, restricted to any one of the L_n, is a (continuous) automorphism of that subspace. In fact, it is known that there exists in E two closed subspaces H_1, H_2, each of which is (as a topological vector space) isomorphic to a separable Hilbert space, and such that $H_1 \cap H_2 = \{0\}$, and that $M = H_1 + H_2$ is dense in E. If (a_n) and (b_n) are orthogonal bases of H_1 and H_2 respectively, u is defined by taking $u(a_{2n-1}) = a_{2n}$, $u(a_{2n}) = -a_{2n-1}$, $u(b_{2n-1}) = b_{2n}$.

$u(b_{2n}) = -b_{2n-1}$; and L_n is the closed subspace of E generated by H_1 and the vectors b_i such that $1 \leq i \leq 2n$.

Such a situation excludes the possibility of proving the existence of a complex structure on a real Banach space by an inductive argument (of the type used, for instance, in the proof of Hahn-Banach's theorem). As was pointed out by the referee, the same example shows that a linear mapping of M onto itself can be continuous on both subspaces H_1, H_2 without being continuous on M itself.

The Johns Hopkins University