A REMARK ON KRONECKER’S THEOREM ON FORMS

HARLEY FLANDERS

The Kronecker theorem on forms over an integral domain is a consequence of integral closure. We refer the reader to [1]1 for a proof and other references. We have failed to find in the literature a statement of the converse of this result and consequently shall here prove that integral closure is a consequence of a relatively weak form [2] of Kronecker’s theorem.

Let \(\mathcal{O} \) be an integral domain which has the following property: Whenever each coefficient of the product of a linear polynomial \(f(X) = a_0X + a_1 \) of \(\mathcal{O}[X] \) by an arbitrary polynomial \(g(X) = b_0X^n + \cdots + b_n \) of \(\mathcal{O}[X] \) is divisible by an element \(c \) of \(\mathcal{O} \), then \(a_0b_0 \) is divisible by \(c \). Then \(\mathcal{O} \) is integrally closed in its quotient field \(k \).

To prove this, we let \(\alpha = u/v \in k \), \(u, v \in \mathcal{O} \), and assume \(\alpha \) is integral over \(\mathcal{O} \). Thus \(h(\alpha) = 0 \) where

\[
h(X) = X^m + c_1X^{m-1} + \cdots + c_m
\]

with all \(c_j \in \mathcal{O} \). Clearly

\[
h(X) = (X - \alpha)(X^{m-1} + \beta_1X^{m-2} + \cdots + \beta_{m-1})
\]

with \(\beta_j \in k \). We select \(w \in \mathcal{O} \) such that \(w\beta_j \in \mathcal{O} \) for all \(j \) and have

\[
vwh(X) = (vX - u)(wX^{m-1} + w\beta_1X^{m-2} + \cdots + w\beta_{m-1}).
\]

Since \(vw \) divides each coefficient of the left-hand side of this equation, it follows from the hypothesis that \(vw \) divides \(uw \), and hence \(v \) divides \(u \). This implies that \(\alpha \) is in \(\mathcal{O} \), which completes the proof.

REFERENCES

California Institute of Technology

Received by the editors August 6, 1951.

1 Numbers in brackets refer to the references at the end of the paper.

197

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use