of our map is a maximal ideal and we see that Statements S2 and S3 are violated. This concludes the proof of our theorem.

Reference

Princeton University

ON ORDERED SKEW FIELDS

T. SZELE

In this paper we shall give a necessary and sufficient condition that a skew field can be ordered; moreover, that the ordering of an ordered skew field \(K \) can be extended to an ordering of \(L \), \(L \) being a given extension of \(K \). The first of these two results generalizes to skew fields a theorem of E. Artin and O. Schreier [1], according to which a commutative field can be ordered if and only if it is formally real. The second result generalizes in the same sense a recent theorem of J. P. Serre [2].

Our considerations are based on the following definition.

Definition. A skew field is said to be ordered if in its multiplicative group a subgroup of index 2 is marked out which is also closed under addition.

Hence a skew field can be ordered if and only if its multiplicative group has a subgroup of index 2 which is also closed under addition.

We shall now prove the following theorem.

Theorem 1. A skew field \(K \) can be ordered if and only if \(-1\) cannot be represented as a sum of elements of the form

\[
(1) \quad a_1^2 a_2^2 \cdots a_k^2 \quad (a_i \in K, i = 1, 2, \ldots, k).
\]

Remark. This property can be considered as a generalization of the notion "formally real" to the case of skew fields.

The necessity of the condition in Theorem 1 is obvious. In order to prove its sufficiency we consider a skew field \(K \) in which \(-1\) cannot be represented as a sum of elements (1). We shall show that the
multiplicative group K^* of K has a subgroup of index 2 which is also closed under addition.

Let S be the subset of all (finite) sums of elements (1) in K with every $a_i \neq 0$. Clearly $0 \in S$, for in the contrary case we should have a relation

$$-a_1^2 \cdots -a_k^2 = b_1^2 \cdots b_l^2 + \cdots$$

from which would follow, by multiplication on the right by $a_1^{-2}, \ldots, a_k^{-2}$, that $-1 \in S$ in contradiction to our hypothesis. On the other hand, one can see immediately that

- $s \in S$, $s' \in S$ imply $ss' \in S$ and $s + s' \in S$,
- $s \in S$ implies $s^{-1} = s \cdot s^{-2} \in S$,
- $s \in S$, $z \in K^*$ imply $z^{-1}sz \in S$.

Hence S is a proper invariant subgroup of K^* which is closed under addition. The order of each element ($\neq 1$) in K^*/S being 2, K^*/S is abelian. Consequently any subgroup P of K^* which contains S is invariant in K^*.

Now we define P as a maximal subgroup of K^* for which

$$S \subseteq P, \quad -1 \notin P, \text{ and } P \text{ is closed under addition.} \tag{2}$$

The existence of such a group P follows immediately from Zorn’s lemma. We have only to show that the decomposition

$$K^* = P \cup (-1)P \tag{3}$$

holds. Suppose (3) is not true. Then there exists an element d such that

$$d \in K^*, \quad d \in P, \quad -d \notin P. \tag{4}$$

Consider the set P' of all elements

$$u + vd \quad (u, v \in \{P, 0\} \text{ but not } u = v = 0).$$

Then, by (4), P' contains P as a proper subset. On the other hand we shall show that P' is a subgroup of K^* having the properties (2) (with P' instead of P). This is a contradiction to the maximal property of P, which will complete the proof.

First we show that $0 \notin P'$. Indeed, by the exclusion of $u = v = 0$, $u + vd = 0$ would imply that $v \neq 0$ and hence that $-d = v^{-1}u \in P$, in contradiction to (4). Moreover, if $u_1 + v_1d$ and $u_2 + v_2d$ are arbitrary elements of P', we have
(5) \((u_1 + v_1d)(u_2 + v_2d) = (u_1u_2 + v_1d\ u_2d) + (u_1v_2d + v_1du_2).\)

But since \(P\) is an invariant subgroup of \(K^*,\) \(du_2 = v_2d, du_1 = u_1d\) hold with suitable elements \(u_1', v_1' \in P,\) so that (5) is an element of \(P'.\) If \(u + vd \in P',\) we obtain

\[(u + vd)^{-1} = (u + vd)(u + vd)^{-2} \in P'.\]

Hence \(P'\) is a group which is obviously closed under addition. Finally, \(-1 \in P'\) for \(u + vd = -1\) would imply (on account of \(v \neq 0\)) that \(-d = v^{-1}(u + 1) \in P.\) This completes the proof.

In an analogous manner we prove the following theorem.

Theorem 2. Let \(L\) be an extension of the ordered skew field \(K.\) The ordering of \(K\) can be extended to an ordering of \(L\) if and only if \(-1\) cannot be represented as a sum of elements

\[(6) \ p_1u_1^2 \cdots p_ku_k^2 \quad (p_i \in K, p_i > 0, u_i \in L, i = 1, 2, \cdots, k).\]

Remark. Theorem 1 is the special case of Theorem 2 in which \(K\) is the prime field of characteristic zero. However, this special case seemed of sufficient interest to warrant an independent proof. Only a few remarks are now necessary to prove Theorem 2 since the proof follows the same general pattern as that of Theorem 1.

The necessity of the condition in Theorem 2 is obvious. In order to prove its sufficiency we define the subset \(U\) of \(L\) as the set of all (finite) sums of elements (6) with every \(u_i \neq 0.\) One can show as above that \(U\) is a subgroup of the multiplicative group \(L^*\) of \(L.\) That, e.g., \(0 \in U\) follows from the fact that a relation

\[-p_1u_1^2 \cdots p_ku_k^2 = p'_1v_1^2 \cdots p'_k v_k^2 + \cdots\]

would imply that

\[-1 = p'_1v_1^2 \cdots p'_k v_k^2 (1 \cdot u_k^{-2})(p_k^{-1} u_k^{-2}) \cdots (p_1^{-1} u_1^{-2}) + \cdots,\]

which is impossible.

Moreover \(U\) is an invariant subgroup of \(L^*.\) This follows from the fact that

\[p \in K, \quad p > 0, \quad z \in L^*\]

imply that

\[z^{-1} p z = z^{-2} z p z p^{-1} = p'_1v_1p_1v_2p_2^2 \cdots \]

with \(p'_1 = 1, v_1 = z^{-1}, p'_2 = 1, v_2 = z p, p'_3 = p^{-1}.\)
From the fact that each element \((\neq 1)\) of \(L^*/U\) is of order 2, we infer as above that any subgroup \(Q\) of \(L^*\) containing \(U\) is invariant in \(L^*\).

Now we define \(Q\) as a maximal subgroup of \(L^*\) for which \(U \subseteq Q\), \(-1 \in Q\), and \(Q\) is closed under addition. Then one can show as above that \(Q\) is a subgroup of index 2 of \(L^*\). Since all positive elements of \(K\) are contained in \(U\) and consequently in \(Q\), the theorem is proved.

Bibliography

Debrecen University, Hungary